Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение продольно сжатых стержней

Автор описывает выпучивание продольно сжатых стержней, сжато скрученных стержней и потерю плоской формы равновесия стержнями, а также особенности разрушения при воздействии ударных нагрузок.  [c.5]

В том случае, когда сжимающие нагрузки, действующие на такие элементы конструкций, как стойки, колонны, пластины или тонкостенные цилиндры, достигают некоторой критической величины, иногда внезапно происходят изменения их формы — изгибание, сморщивание, искривление или выпучивание. Хотя напряжения, вызываемые приложенными нагрузками, могут быть вполне допустимыми с точки зрения прочности, большие перемещения в результате изменений формы могут привести к потере равновесия и внезапной поломке. Такой вид разрушения обычно называется разрушением вследствие неустойчивости, или выпучивания. Потеря устойчивости обусловлена лишь размерами конструкции и модулем упругости материала и никак не связана с его прочностью. В частности, элемент конструкции из высокопрочной стали заданной длины не может выдержать критической нагрузки, большей, чем элемент таких же размеров и такого же поперечного сечения из низкопрочной стали. Боковое выпучивание продольно сжатых стержней представляет собой имеющий большое практическое значение пример потери устойчивости, исследование которого позволит понять сущность этого явления.  [c.549]


Подбор сечений для продольно сжатых стержней часто представляет собой решающую часть общего расчета конструкции, поскольку разрушение такого стержня обычно вызывает катастрофу. Более того, рассчитывать продольное сжатие стержней труднее, чем изгиб и кручение балок, поскольку поведение стержней при этом оказывается более сложным. Если длина продольно сжатого стержня значительно больше его ширины, то он может перестать выполнять свои функции вследствие потери устойчивости, т. е. вследствие изгибания и появления боковых прогибов, что происходит раньше, чем конструкция выйдет из строя непосредственно из-за сжатия. Потеря устойчивости может быть либо упругой, либо неупругой в зависимости от гибкости стержня. Ниже в первую очередь будет обсуждаться поведение длинных тонких стержней из упругого материала.  [c.387]

При нагрузке, превышающей критическую величину, прямолинейная форма оси стержня становится неустойчивой и стержень переходит к новой криволинейной форме устойчивого равновесия. Эта криволинейная форма устойчива, но даже при крайне небольшом превышении критической нагрузки внезапно возникает резко нарастающий поперечный прогиб стержня, завершающийся его разрушением, так как напряжения достигают предела прочности материала. Так, при шарнирном закреплении верхнего и нижнего концов продольно сжатого стержня, даже если нагрузка превышает критическое значение всего на 0,1 %, максимальный прогиб в середине пролета стержня длиной имеет величину = 0,0282 .  [c.70]

Если мы подвергнем продольному сжатию тонкую деревянную линейку, то она может сломаться, изогнувшись перед изломом сжимающие силы, при которых произойдет разрушение линейки, будут значительно меньше тех, которые вызвали бы при простом сжатии напряжение, равное пределу прочности материала. Разрушение линейки произойдет потому, что она не сможет сохранить приданную ей форму прямолинейного, сжатого стержня, а искривится, что вызовет появление изгибающих моментов от сжимающих сил Р и, стало быть, добавочные напряжения от изгиба линейка потеряет устойчивость прямолинейной формы.  [c.447]

При сжатии вдоль волокон разрушение композиционного материала происходит за счет потери устойчивости волокон аналогично разрушению гфи продольном изгибе стержня.  [c.84]

Классический продольный изгиб при сжатии длинного тонкого стержня показан на рис. 1. В действительности линия приложения нагрузки не совпадает с продольной осью стержня, вследствие чего возникает изгибающий момент относительно его центра и стержень изгибается. При незначительных нагрузках для сохранения прямолинейности стержня и возвращения его в исходное положение при небольших боковых смещениях достаточно упругого противодействия, т. е. система будет находиться в стабильном равновесии. При увеличении нагрузки до некоторого значения достигается состояние нейтрального равновесия, при котором изгибающие силы и силы упругого противодействия уравновешены, и любые боковые смещения стержня не нарушают его стабильности. При дальнейшем увеличении нагрузки происходит потеря устойчивости стержня, так как малейшая несоосность вызывает катастрофический продольный изгиб его, заканчивающийся течением материала или разрушением стержня. Критическая нагрузка, необходимая для нейтрального равновесия, зависит от соотношения между длиной и толщиной стержня, модуля упругости материала стержня и способа приложения нагрузки к его концам.  [c.9]


Размер отверстия для заклепки выбирают таким, чтобы можно было быстро собрать соединение, но чтобы при этом не происходило продольного деформирования стержня заклепки, выпучивания и коробления деталей после сборки. Поэтому следует признать завышенной величиной зазор между стенкой отверстия в стеклопластиках и стержнем крепежного элемента 0,4 мм [13, 5. 317 50]. При наличии зазора возможно смещение деталей, которое приводит к концентрации напряжений (рис. 5.29). Посадка с опорой крепежного элемента по всей его длине сдерживает его перекос. Идеальным случаем было бы использование чистой посадки (зазор и натяг отсутствуют). Но она не выполнима [37]. Когда крепежный элемент вводится с натягом в отверстие детали из ПКМ слоистой структуры, то на армирующие волокна действуют большие срезающие силы, происходит их изгиб (рис. 5.30) с разрушением матрицы. На обратной стороне возможно расслоение ПКМ и отрыв слоев. Повреждения возможны даже при натяге 0,0178 мм [37]. Такие же явления наблюдаются при полном заполнении отверстия расширяющимся в процессе клепки стержнем заклепки. Число циклов до разрушения образцов с незаполненным отверстием (диаметральный натяг Н = 0%) составило в среднем 150 ООО и 85 ООО соответственно для стеклотекстолитов ВФТ-2ст и КАСТ-В, а число циклов до разрушения образцов с заполненным заклепками из сплава В65 отверстием (Н = 6%) составило для ВФТ-2ст 40 ООО, для КАСТ-В 20 ООО, то есть долговечность заметно снизилась [3, с. 81]. Эти проблемы обусловили главное требование, чтобы посадка крепежного элемента в отверстие детали из ПКМ производилась с зазором (0,000-1,02) X 10 м [35]. Вместе с тем было показано, что увеличение величины натяга в соединении эпоксидных углепластиков растет его усталостная долговечность [51]. Натяг желателен для обеспечения более равномерного нагружения крепежных элементов в многорядных соединениях и большей плотности против утечки топлива из баков, для уменьшения относительной подвижности крепежных элементов. Поскольку ПКМ лучше работает при сжатии, предложено в отверстие вводить втулку с контролируемым расширением, которая остается в по-  [c.163]

Деформации многих конструкций при действии некоторого вида нагрузок незначительны, пока величины этих нагрузок меньше так называемых критических значений. При нагрузках же, превышающих (даже весьма незначительно) критические значения, деформации конструкций резко возрастают. Простейший пример такого явления представляет так называемый продольный изгиб сжатого стержня — при некотором значении сжимающей силы происходит выпучивание прямолинейного стержня, практически равносильное разрушению. Такое качественное изменение характера деформации конструкции при увеличении нагрузки называется потерей устойчивости. Расчет конструкции, имеющий целью не допустить потери устойчивости, называется расчетом на устойчивость.  [c.5]

Продольный Два размера детали ма- лы по сравнению с третьим, основным размером при сжатии стержня возможна потеря устойчивости Расчет должен производиться не только на прочность (при сжатии), но и на устойчивость, так как возникновение в стержне быстро нарастающих деформаций при медленном приближении нагрузки к критической ведет к разрушению стержня. Указания к расчету см. стр. 210  [c.147]

Прямолинейная форма сжатого стержня устойчива лишь при сжимающей силе, меньшей некоторого (называемого критическим) значения. При большей силе происходит продольный изгиб стержня — потеря устойчивости равновесия прямолинейной формы, практически равносильная разрушению.  [c.21]

Заинтересовавшись во второй половине XIX в. частыми разрушениями строившихся в то время стальных мостов, Ф. С. Ясинский пришел к выводу, что причиной катастроф во многих случаях являлась недооценка при разработке проектов возможности продольного изгиба сжатых стержней. Это побудило его детально изучить данный вопрос, результатом чего явилось его замечательное исследование Опыт развития теории продольного изгиба , опубликованное в 1892—1893 гг.  [c.282]

Нахождение временного сопротивления кручению. При достаточно большом крутящем моменте закрученный образец разрушается. Характер разрушения оказывается различным в зависимости от материала. Образец из пластического материала, как правило, разрушается вследствие среза поперечного сечения, то есть сечения, в котором действуют основные касательные напряжения. Точно такие же по величине касательные напряжения действуют в продольных сечениях стержня вследствие закона парности, поэтому закрученный деревянный стержень расщепляется вдоль волокон. Наконец, при кручении стержней из хрупкого материала, например чугуна, наблюдаются характерные косые изломы. Как известно, чугун обладает низким сопротивлением отрыву, а напряженное состояние чистого сдвига в бесконечно малом элементе закрученного стержня приводится к растяжению — сжатию по двум направлениям, составляющим угол 45° с осью стержня (рис. 132). Поэтому существуют семейства винтовых поверхностей, пересекающих образующую  [c.203]


В рассмотренных ранее видах деформаций величина деформации линейно зависела от нагрузки. При постепенном увеличении нагрузки деформация увеличивалась без резкого скачка, при этом характер напряженного состояния не изменялся. Однако встречаются случаи, когда при постепенном увеличении нагрузки резко изменяются форма равновесия тела и напряженное состояние, вследствие чего может произойти внезапное разрушение. Если сжимать продольными силами стержень до тех пор, пока сжимающие силы не превзойдут некоторой предельной величины, зависящей от длины стержня и жесткости его поперечного сечения, стержень будет испытывать обычное сжатие и ось его будет оставаться прямолинейной. Однако если сжимающие силы станут больше этой предельной величины, то стержень внезапно выпучится и ось его изогнется.  [c.320]

При превышении силой, сжимающей стержень, критического значения прямолинейная форма равновесия стержня становится неустойчивой, стержень выпучивается—деформация сжатия переходит в деформацию продольного изгиба. При этом появляется изгибающий момент, резко возрастающий с увеличением силы, что в свою очередь вызывает резкий рост напряжений и, как следствие, разрушение стержня. Поэтому сжатый стерл<ень должен удовлетворять условию устойчивости  [c.282]

При продольно-поперечном изгибе напряжения, как это видно из рис. 11.13, не прямо пропорциональны нагрузке, а изменяются быстрее, чем нагрузка (в случае сжимающей силы 5). В связи с этим даже незначительное случайное увеличение нагрузки сверх расчетной может вызвать весьма большое увеличение напряжений и разрушение конструкции. Поэтому расчет сжато-изогнутых стержней на продольно-поперечный изгиб следует производить не по допускаемым напряжениям, а по допускаемой нагрузке.  [c.579]

Опытами [4], [211 установлено, что в ряде случаев при избыточном количестве продольной и поперечной арматуры возможны случаи разрушения железобетонных элементов прямоугольного и таврового сечений, работающих на косой изгиб с кручением, по сжатому бетону ранее чем наступит текучесть в стержнях продольной и поперечной арматуры, пересекаемых наклонной трещиной.  [c.201]

В этих условиях повторные нагрузки могут вызвать разрушение. Уменьшив же вдвое критическую силу (для длинного стержня), мы получаем уменьшение изгибающего момента, вызванное сжатием, во много раз и даже десятков раз чтобы уменьшить вдвое изгибающий момент от продольных сил, близких к критическим, достаточно уменьшить сжимающую нагрузку на 1—5%, так как при этом удваивается знаменатель (Р — Р).  [c.187]

Числовой множитель в этой формуле выбран для случая железных листов, через б обозначена толщина листа и через h — его ширина. Следовательно, при отношении б Л=0,01 критическое напряжение равно 8 KejMM . Если сжатый лист составляет лишь одну из составных частей сжатого элемента, то при переходе сжимающихся напряжений за критическое значение еще не получится разрушения всего элемента, как это бывает при продольном изгибе стержней. Потерявший устойчивость сжатый лист выпучивается, перестает принимать на себя дальнейшую нагрузку и потом повышение сжимающих усилий будет восприниматься лишь более жесткими частями сжатого элемента. В подобных случаях нет надобности при назначении толщины листа брать такой же запас прочности, как в случае продольного изгиба. Приравнивая в этом случае критическое напряжение пределу текучести при простом растяжении железа, мы могли бы здесь ограничиться лишь двойным запасом прочности. На основании формулы (15) можно заключить в таком случае, что сжатые листы с опертыми краями следует проверять лишь тогда, когда h б>60.  [c.419]

Тонкий продольно сжатый стержень из алюминия Е=0,7-10 кГ/см ) длиной 1,8 м имеет кольцеобразное поперечное сечение, внешний диаметр которого равен 5 см. Определить необходимую толш ину t стенки, если сжимаюш ая нагрузка составляет Р=1,5 т и коэффициент запаса прочности по отношению к разрушению при упругом вьшучивании необходимо брать равным п=2. (Предполагается, что КОНЦЫ стержня шарннрцо оперта.)  [c.413]

Однако стержни, армированные только в осевом направлении, не нашли широкого применения. Причиной этого послужила специфическая для однонаправленных композитов форма разрушения при продольном сжатии, связанная с образованием продольных трещнн, вызванных растяжением материала в поперечном направлении за счет эффекта Пуассона. Для уменьшения этой деформации стержни обычно армируются и в поперечном направлении. Кроме того, в силу причин технологического характера продольные слои иногда укладываются под некоторым углом к оси стержня. Таким образом, типовая структура композитного стержня фермы образуется из системы продольных или спиральных слоев и слоя, армированного в поперечном направлении. Наиболее распространенными являются стержни кругового поперечного сечения.  [c.344]

В связи с этим укажем на возможность и иного характера разрушения трубки. Именно, может произойти продольный изгиб цилиндрической трубки, как стержня, работающего на сжатие и укрепленного своими концами шарнирно. Если мы обозначим критическую силу через 2атсЯ , то по формуле Эйлера получится  [c.372]

Рис. 2,2. а — линии скольжения (линии Людер-са) при продольном растяжении стального стержня Ь — разрушение деревянного бруса при сжатии.  [c.64]

Испытание на устойчивость дает возможность определять несущую способность тонкостенных элементов (Стоек, профилей, труб) при сжатии их продольной силой [13, 14]. Метод позволяет производить оценку материалов, предназначенных для элементов конструкций, работающих на продольный изгиб, путем испытания тонкостенных стержней с различной формой поперечного сечения и различной длины. Испытания проводятся с учетом предполагаемых условий эксплуатации при однократном и длительном нагружениях, при комнатной и повышенных температурах, до разрушени (до потери устойчивости) или прекращаются при достижении определенной степени деформации. Для испытания на устойчивость при однократном приложении нагрузки используются универсальные машины или прессы, при длительном нагружении — машины рычажного типа, предназначенные для испытаний на длительную прочность и ползучесть, которые в этом случае снабжаются специальными реверсорами.  [c.52]


К катег-ории А относятся дефекты и повреждения основных несущих элементов, их соединений и узлов, представляющие непосредственную опасность для дальнейшей эксплуатации конструкций поперечные трещины в поясах балки, продольные трещины в стенке или в верхнем поясном шве длиной больше 200 мм, трещины в фасовках и стержнях решетчатых балок, массовое (свыше 30%) ослабление заклепочных или болтовых соединений, значительные искривления сжатых элементов решетки, значительное (свыше 30% по длине) разрушение соединений балки с тормозной конструкцией, разрушение элементов опорных узлов, значительные коррозионные повреждения металла (свыше 20% по толщине элементов).  [c.93]


Смотреть страницы где упоминается термин Разрушение продольно сжатых стержней : [c.497]    [c.426]    [c.204]   
Механика материалов (1976) -- [ c.393 , c.401 ]



ПОИСК



Стержень сжатый

Стержни продольно сжатые



© 2025 Mash-xxl.info Реклама на сайте