Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анодное окисление металлов влияние

Влияние адсорбции на анодное окисление металлов  [c.116]

Из реализации электрохимического механизма в большинстве каталитических процессов осаждения металлов следует, что имеющиеся данные по электроосаждению металлов и анодному окислению восстановителей можно использовать для усовершенствования существующих и создания новых способов химической металлизации. Влияние на каталитический процесс  [c.92]

Влияние количества протекшего электричества сказывается на анодной и на катодной поверхностях. На вспомогательном аноде наибольшее значение имеет электролитическое окисление анода. Некоторые графитовые аноды медленно разрушаются при непрерывном электролизе причина этого явления до сих пор не выяснена. Обычные металлические электроды окисляются пропорционально количеству протекшего электричества. Многие аноды служат при такой высокой поляризации, что кроме окисления металла происходит и разряд анионов. Вследствие этого окисление анода становится меньше величины, вычисленной по закону Фарадея. Получающаяся при этом экономия анодного материала аннулируется большим расходом энергии в результате более высокой поляризации.  [c.971]


Влияние анионов на процесс замедления коррозии. Хотя защитная пленка, образуемая почти всеми ингибиторами, состоит в основном из окисла, основной защитный анион имеет решающее значение в определении того, разовьется ли коррозия или будет иметь место ее замедление. Как правило, трудно замедлить процесс коррозии в присутствии хлоридов и легко — в присутствии анионов, образующих с металлами плохо растворимые соли. Растворимость, однако, не может быть единственным определяющим фактором сульфат алюминия легко растворим, и все же окисная пленка образуется на алюминии, подвергающемся анодному окислению в серной кислоте (стр. 225).  [c.133]

Подвижные ионы железа могут диффундировать и уходить с поверхности металла. Поскольку ионы гидроксила, возникающие в процессе катодного восстановления растворенного кислорода, движутся в противоположном направлении, образование гидроокиси железа произойдет на некоторой промежуточной стадии между анодной и катодной зонами. Этот процесс будет сопровождаться электрохимическим окислением гидроокиси железа до гидратированной окиси железа или ржавчины из-за присутствия кислорода в воде. Так как ржавчина удаляется с поверхности металла, то она не оказывает влияния на скорость коррозии.  [c.30]

Анодный процесс, происходящий внутри сдвигов с надрывами (в зоне предразрушения) или внутри уже образованных трещин усталости, будет наиболее интенсивным в местах снижения электродного потенциала под влиянием концентрации напряжений и разрушения действующими напряжениями пассивирующих пленок окислов. Этот процесс будет способствовать росту трещин усталости, во-первых, за счет ослабления металла (его окисления) и, во-вторых, за счет дополнительных, коррозионных напряжений, расклинивающих трещины.  [c.174]

При электрохимическом полировании переход металла в раствор происходит в условиях частичной пассивности, что связано с образованием на нем пассивирующей пленки оксидной или оксидно-адсорбционной природы. Она образуется под влиянием взаимодействия продуктов растворения металла с компонентами электролита или вследствие непосредственного окисления при повышении анодного потенциала, а также сорбционных процессов. Результат анодной обработки в этих условиях определяется соотношением скоростей формирования пленки и ее растворения в электролите. Преобладание первой из них способствует оксидированию, второй — травлению металла. Эффект полирования достигается при близких скоростях процессов, когда формируется пленка минимальной толщины, которая, однако, должна быть достаточной, чтобы предотвратить травящее действие электролита на металл.  [c.73]


Анодный потенциал зависит от природы металла и концентрации его ионов. Анодные поверхности могут покрыться, пленкой некоторых осаждающихся продуктов коррозии и таким образом не обнаружить потенциал, характерный для этого металла, когда его поверхность чиста. Пример анодной пленки можно получить в растворах бихроматов, которые дают полную анодную пассивность. Следовательно, анодные потенциалы будут изменяться в соответствии с употребляемыми электролитами и могут испытывать влияние процессов длительных изменений, идущих в пленках. На анодный потенциал также влияет концентрация Н-ионов и кислорода последний может оказывать влияние, действуя на концентрацию ионов металла, например, в случае железа окислением Ре(ОН)2 до менее растворимого гидратированного РегОз или изменением природы анодной пленки .  [c.290]

Защита от коррозии путем воздействия на анодные или катодные участки поверхности обеспечивается противокоррозионными пигментами. В зависимости от механизма действия различают пигменты-ингибиторы и пигменты-пассиваторы. Анодное ингибирование достигается пигментами, обладающими способностью принимать электроны или увеличивать pH среды и вследствие химических процессов окисления или гидратации образовывать на анодных участках защитные пленки. Результатом их действия является смещение электродных потенциалов металлов в более положительную сторону, в том числе в область пассивного состояния, в которой коррозии металла не происходит. Приведенные ниже данные показывают сдвиг стационарного потенциала стали в воде под влиянием добавок пигментов  [c.164]

Состав электролита. Из всех факторов, влияющих на выход по току, наиболее сильное влияние оказывает состав электролита. Так как одной из основных причин отклонения выхода по току от теоретической величины является растворимость металла в электролите с последующим окислением анодными продуктами, желательно понижать растворимость металлов в электролите. Добавки солей с более электроотрицательными катионами по  [c.153]

В тех случаях, когда при коррозии на поверхности металла образуется окисный (или солевой) слой в виде сплошного, изолирующего ее от раствора чехла, дальнейшее анодное окисление металла непременно будет включать стадию доставки участников реакции через этот слой. Поскольку перенос вещества через твердую фазу в обычных условиях процесс довольно медленный [1], можно предполагать, что стадия переноса через слой окисла, по крайней мере в некоторых случаях, окажется наиболее медленной стадией, определяющей скорость процесса окисления металла в целом. Экспериментальное выявление концентрационной поляризации в твердой фазе представляет, однако, известную трудность. Прямые методы обнаружения концентрационной поляризации, применяющиеся при исследовании реакций с переносом реагентов в растворе (по влиянию конвекции или по изменению концентрации реагентов), в данном случае непригодны. Из косвенных, релаксационн ых методов исследования высокочастотные методы имеют ограниченную применимость. Они не могут обнаружить концентрационную поляризацию тогда, когда для ее проявления требуется время, более длительное, чем длительность единичного импульса, которая у этих методов очень мала. При импедансном методе, например, она не превышает нескольких миллисекунд, так как нижний предел рабочих частот у этого метода не ниже 200 гц. Следовательно, в случаЖс, когда для проявления концентрационной поляризации необходимо, например, несколько секунд или минут, этот метод обнаружить ее не сможет. Такие случаи, оказалось, не так уже редки на практике, и применение к ним высокочастотных методов может привести к ошибочным выводам относительно природы скорость определяющей стадии процесса [2]. Вероятность возникновения такого случая увеличивается, как увидим ниже, при замедлении электрохимической стадии процесса, т. е. при его истинной пассивации . Поскольку именно пассивные металлы представляют для нас наибольший интерес, требовалось изыскать метод, который был бы в принципе свободен от указанного ограничения. В поисках его мы обратили внимание на метод потенциостатической хроноамперометрии, предложенный и апробированный на реакциях, протекающих с пе-  [c.80]

Определенный шаг к раскрытию механизма коррозии гетерогенных сплавов был сделан исследованиями анодного окисления. Прежде всего следует отметить, что неоднозначность взаимного влияния компонентов оказалась присущей и анодным процессам. В одних случаях экспериментальные результаты свидетедьствовали о повышенной анодной активности компонентов сплава по сравнению с чистыми металлами [144, 153, 156- 158], в других наблюдалась прямо противоположная картина [158— 160]. Например, методом  [c.158]


Из реализации электрохимического механизма в большинстве каталитических процессов осаждения металлов следует, что имеющиеся данные по электроосаждению металлов и анодному окислению восстановителей можно использовать для усовершенствования существующих и создания новых способов химической металлизации. Влияние на каталитический процесс различных факторов (например, концентрации компонентов раствора, температуры) можно предсказать по их влиянию на отдельные анодные и катодные реакции. Отмеченная выше неаддитивность электрохимических реакций во многих рассматриваемых системах несколько ограничивает прямое использование электрохимических данных для точного прогнознрования скорости каталитических процессов,  [c.74]

Анодная по.ияризация, хотя непосред-ственно И не оказывает влияния на качество электролитического покрытия, все же дает нам представление о возможности поддерживания постоянства концентрации осаждающегося металла и кислотности электролита, образования соединений высшей степени валентности за счет анодного окисления (в случае присутствия в растворе соединений, дающих ионы различной степени окисления) все эти факторы могут коС венно влиять ца качества электролитическо осадка.  [c.133]

Если сплав находится в области потенциалов, где возможно окисление только одного компонента А, то его анодное растворение или коррозия со.провождаются обеднением поверхности по А и обогащением — по В. На начальном этапе СР особое значение приобретает вопрос о взаимном влиянии анодных реакций компонентов. Исследование начальных стадия In+- -In + протекает в электролите. К сожалению, зы вает, что олово не сказывается на кинетике ионизации индия, которая остается такой же, ак и в случае, растворения чистого металла [18J.  [c.32]

Подобный вывод следует также из анализа термодинамических данных изменения свободной энергии образования оксидов металлов, входящих в исследуемые сплавы. Так, изменение свободной энергии (в расчете на 1 г-экв металла) образования Т102 (анатаз), АЬОз и 2гО соответственно равно —95,59 —144,92 —140,36 кДж. Для образования оксидов Сг, 5п, Мп уменьшение свободной энергии значительно меньше, чем для титана [108]. Исходя из этих данных, можно утверждать, что в сплаве на основе титана с рассматриваемыми металлами только А1 и 2т могут окисляться избирательно и предпочтительно перед основой титана, образуя собственные оксиды, или давать смешанные оксиды титана, обогащенные этими компонентами. Концентрация остальных элементов, например, таких, как Сг, 5п и Мп, в оксидной пленке должны быть ниже, чем в исходном сплаве. Уместно вспомнить, что при изучении окисления сплавов в СОг при 1000 °С с помощью электронного микрозонда [109] было установлено, что в окалине сплава Т1 — 5% Сг было лишь 0,15—0,53% Сг, а в окалине сплава Т1—5% А1 содержание алюминия достигало 8—20%. Очевидно и в анодной оксидной пленке сплавов Т1 — А1 и Т1 — 2г можно ожидать большего обогащения оксидов А1 и 2г с пониженной химической стойкостью, о чем свидетельствует уменьшение времени самоактивации этих сплавов после анодной пассивации. Таким образом, основное влияние исследованных легирующих добавок на анодный ток растворения титано-  [c.45]

ВИЯХ эксплуатации металлоизделий. К их числу можно отнести реакции электрохимического восстановления радикалов — первичных продуктов окисления масел на электроотрицательных металлах с низкой работой выхода электрона или (в случае катодной поляризации металла) от внешнего источника тока восстановления маслорастворимых ПАВ, содержаш,их нитрогруппы электрохимического окисления серосодержащих веществ, вплоть до суль-фонов и сульфокислот и пр. Применительно к химмотологии и трибологии электрохимические поверхностные реакции практически не изучены, но их значение трудно переоценить. Помимо влияния на коротквживущие и долгоживущие стабильные свободные радикалы, на процессы окисления и старения смазочных материалов эти реакции влияют на их защитные, антифрикционные и другие поверхностные свойства. Так, при восстановлении нитрогрупп на катодных участках металла возникают токи, сдвигающие потенциал металла в положительную сторону, что может привести к торможению анодного процесса растворения металла за счет смещения стационарного потенциала к потенциалу полной пассивации [50].  [c.30]

Процесс в целом представляет собой перенос металла от анода к катоду через раствор. Большую роль играет механизм растворения анода и для оказания определенного влияния на этот процесс в металл анода или в раствор могут быть введены различные вещества. В некоторых важных приложениях используется нерастворимый анод. В этом случае анодная реакция пред-ставлят собой окисление воды или гидроксильных ионов  [c.332]


Смотреть страницы где упоминается термин Анодное окисление металлов влияние : [c.235]    [c.16]    [c.209]    [c.241]   
Теоретические основы коррозии металлов (1973) -- [ c.99 , c.112 , c.114 ]



ПОИСК



Анодное окисление (растворение) металлов адсорбции влияние

Анодное окисление металлов

Анодный

Влияние адсорбции на анодное окисление металлов

Окисление



© 2025 Mash-xxl.info Реклама на сайте