Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластичность располагаемая

По-разному ведут себя пластичные и хрупкие материалы и при испытании на ся атие. Как уже упоминалось, испытание на сжатие производится на коротких цилиндрических образцах, располагаемых между параллельными плитами. Для малоуглеродистой стали диаграмма сжатия образца имеет вид кривой, показанной на рис. 58.  [c.65]

По-разному ведут себя пластичные и хрупкие материалы и при испытании на сжатие. Как уже упоминалось, для испытания на сжатие используют короткие цилиндрические образцы, располагаемые между параллельными плитами. Для малоуглеродистой стали диаграмма сжатия образца имеет вид кривой, показанной на рис. 1.43. Здесь, как и у диаграммы растяжения, обнаруживается площадка текучести с последующим переходом к зоне упрочнения. В дальнейшем, однако, нагрузка не падает, как при растяжении, а резко возрастает. Происходит это в результате того, что площадь поперечного сечения сжатого образца увеличивается сам образец вследствие трения на торцах принимает бочкообразную форму (рис. 1.44). Довести образец пластичного материала до разрушения практически не удается. Испытуемый цилиндр сжимается в тонкий диск (см. рис. 1.44), и дальнейшее испытание ограничивается возможностями машины. Поэтому предел прочности при сжатии для такого рода материалов найден быть не может (см. табл. 1.1).  [c.87]


Для квазистатических разрушений односторонне накопленная деформация равна предельной деформации однократного статического разрушения (располагаемая пластичность материала) Zf и, следовательно.  [c.15]

Третий, наиболее общий, случай применения зависимости (1.2.9) соответствует высоким температурам, когда эффект ползучести преобладает и располагаемая пластичность зависит от времени (t). В первом приближении принимается, что располагаемая пластичность материала является только функцией времени деформирования и определяется для рассматриваемой температуры по испытаниям на статический разрыв с варьируемой длительностью или из испытаний на ползучесть — длительную прочность.  [c.22]

Рассматриваемая гипотеза длительного циклического разрушения учитывает наличие зависимости располагаемой пластичности материала, получаемой в условиях длительных статических испытаний, от времени деформирования при высоких температурах. При этом тип испытания не должен оказывать существенного влияния на зависимость располагаемой пластичности от времени.  [c.24]

Отмечаемое обстоятельство более интенсивного изменения располагаемой пластичности в условиях испытаний на ползучесть может быть использовано для получения в переходной области данных, идущих в запас при оценке длительной циклической прочности (см. рис. 1.2.2, а, точки 1).  [c.24]

Рассматриваемая концепция кинетических деформационных критериев малоциклового разрушения предполагает зависимость кривой усталости при жестком высокотемпературном нагружении только от величины располагаемой пластичности материала  [c.32]

Следует подчеркнуть, что расчетная кривая усталости, построенная с использованием концепции кинетических деформационных критериев разрушения, предполагается зависящей только от величины располагаемой пластичности материала. В этом случае эффект частоты нагружения и выдержки проявляется только через зависимость располагаемой пластичности от времени и для испытываемого материала дает по параметру длительности цикла кривые усталости типа показанных по параметру частоты нагружения V на рис. 1.2.11, б.  [c.34]

Условия испытаний при мягком нагружении (ом. рис. 1.2.1, г) Располагаемая пластичность для расчета 4 .р-Ьеж Й/ + 8 + df +  [c.38]

Условия испытаний при жестком нагружении ( ц = 1 мин) (см. рис. 1.2.1, б) Располагаемая пластичность для расчета 4 ,р+СЖ df+d ,, , Р+СЖ dy-Ьdi  [c.40]


Условия испытания при жестком нагружении (см. рис. 1.2.1, в) Располагаемая пластичность для расчета 4 dP+ m 1 рЧ-сж Ч- й]  [c.41]

Предельные числа циклов на стадии образования трещин определяются на основе деформационно-кинетических критериев малоциклового и длительного циклического разрушения (уравнение (1.2.8)) линейным суммированием квазистатических и усталостных повреждений с учетом изменения циклических и односторонне накопленных деформаций по числу циклов и времени, а также изменения во времени располагаемой пластичности материала.  [c.44]

Возможность применения деформационно-кинетических критериев малоцикловой и длительной циклической прочности в условиях неизотермического нагружения должна быть экспериментально обоснована с учетом особенностей, сопровождающих процесс циклического нагружения при переменных температурах. Эти особенности прежде всего связаны с характером изменения во времени и с числом циклов нагружения располагаемой пластичности материала, а также односторонне накопленных и циклических необратимых деформаций.  [c.44]

Другим базовым испытанием свойств материалов при неизотермическом длительном малоцикловом нагружении оказывается испытание с целью определения располагаемой пластичности материала. Такие данные могут быть получены при монотонном статическом растяжении образца с варьируемой в широких пределах скоростью деформирования в условиях заданного температурного цикла (рис. 1.3.1, д).  [c.45]

Для корректной оценки накопления усталостных и длительных статических повреждений при термоусталостном нагружении требуется получение системы базовых данных путем проведения соответствующих экспериментов с учетом специфики переменных температур [91]. Такими базовыми экспериментами являются испытания с целью определения располагаемой пластичности материала и получения кривых усталости в условиях термоусталостного цикла нагружения и нагрева соответствующей частоты.  [c.49]

Кривые усталости и данные о располагаемой пластичности материала используются для определения доли усталостного и длительного статического повреждений соответственно.  [c.49]

Определение доли длительного статического повреждения осуществлено по результатам испытаний, выполненных с целью получения значений располагаемой пластичности материала при монотонном статическом растяжении образца с варьируемой в широких пределах скоростью деформирования в условиях заданного температурного цикла 200 860° С длительностью 5,5 мин. На  [c.52]

По характеристикам пластичности материала может быть получена предельная величина односторонне накопленной деформации ef = 0,51н(1 — с помош ью которой определяется располагаемая пластичность и доля квазистатического повреждения в условиях циклического нагружения (уравнение (1.1.12)).  [c.59]

Рис, 72, Зависимость односторонней деформации при термоциклическом нагружении от долговечности (а) по параметру жесткости (С) и располагаемая пластичность ф сплава (б) при различной длительности испытаний  [c.131]

В условиях неизотермического нагружения, когда полуцикл растяжения протекает в высокотемпературной части цикла нагрева, особенно повышается роль пластичности. Показательны в этом отношении данные, приведенные на рис. 3, б и полученные в разных контрастных условиях неизотермического нагружения. Например, сравнение кривых 5 и б на рис. 3, б показывает, что более сильное охрупчивание сплава при 973 К приводит к существенному (до трех раз) снижению долговечности в сравнении с аналогичными данными для температурного режима с максимальной температурой 1133 К. Характерно, однако, что уровень располагаемой пластичности, по-видимому, на сопротивление малоцикловой усталости влияет незначительно, если полуцикл сжатия механического нагружения приходится на диапазон высокотемпературной части термического цикла нагрева. Об этом свидетельствует близость данных по малоцикловой неизотермической усталости (см. рис. 3, б, кривые 1—4).  [c.39]

При этом уравнение (1) описывает условие достижения предельного состояния в зоне разрушения на основе линейного суммирования компонент повреждений. В уравнениях (2) и (3) усталостное повреждение за цикл связывается с величиной полной или необратимой деформации (равной ширине петли гистерезиса), а квазистатическое — определяется односторонне накопленной деформацией, при этом суммирование повреждений производится с учетом изменения по циклам и во времени циклических и односторонне накопленных деформаций, а также исчерпания располагаемой пластичности материала.  [c.41]


Другим важным методическим моментом является правильный выбор значений длительной пластичности. При этом в связи с выраженной зависимостью величины предельного повреждения по уравнению (6) от изменения во времени располагаемой пластичности материала необходимо использовать соответствующие корректно полученные данные о пластичности. Представляется, что оптимальным является привлечение результатов экспериментов, выполненных на материале одной плавки с сохранением основных методических подходов (тип испытания, образец, способ нагрева, методика измерения нагрузок и температур, точность аппаратуры) [16]. Для характеристики роли изменения располагаемой пластичности в формировании величин предельного повреждения на рис. 10 приведены данные расчета повреждений по уравнению (6) без учета зависимости = f (t). Там же приведены данные, полученные по формуле (5) при подсчете накопленного длительного статического повреждения в обычной временной форме  [c.49]

Следует подчеркнуть, что расчетная кривая усталости в данном случае предполагается зависящей только от величины располагаемой пластичности материала  [c.96]

Кривые располагаемой пластичности  [c.19]

Долговечность оценивают, используя правило суммирования повреждений в соответствии с деформационно-кинетическим критерием прочности. Базовые данные и расчетные характеристики получают при термомеханическом режиме нагружения, соответствующем эксплуатационному или эквивалентному ему по деформациям, температурам и длительностям. При этом определяют кривые малоцикловой усталости (при жестком нагружении) и располагаемой пластичности (при монотонном статическом разрыве или испытании на длительную прочность и пластичность).  [c.23]

Для получения оценки долговечности с максимальным запасом прочности в расчет вводят минимальные значения характеристик сопротивления усталости (например, для наиболее опасных режимов неизотермического нагружения) и располагаемой пластичности (например, предельную пластическую деформацию при равномерном удлинении в состоянии деформационного охрупчивания).  [c.23]

По-разному ведут себя пластичные и хрупкие материалы и при испытании на сжатие. Как уже упоминалось, испытание на сжатие производится на коротких цилиндрических образцах, располагаемых между параллельными плитами. Для малоуглеродистой стали диаграмма сжатия образца tiMeeT вид кривой, показанной на рис. 58. Здесь, как и для растяжения, обнаруживается площадка текучести с последующим переходом к зоне упрочнения. В дальнейшем, однако, нагрузка не падает, как при растяжении, а резко ьозрастает. Происходит это в результате того, что площадь поперечного сечения сжатого образца увеличивается сам образец вследствие трения на торцах принимает бочкообразную форму (рис. 59). Довести образец пластического мате-  [c.74]

Базовыми экспериментами при использовании деформационнокинетических критериев в форме (1.1.10)—(1.1.12) являются малоцикловые испытания при жестком нагружении и статический разрыв, проводимые с целью построения кривой малоциклового усталостного разрушения и определения располагаемой пластичности  [c.16]

Для построения кривой располагаемой пластичности материала использованы данные по длительной пластичности в условиях испытаний на ползучесть (фполз) и статического нагружения с широкой вариацией времен до разрушения (фстат)- На рис. 1.2.3 приведены соответствующие экспериментальные данные. Наблюдается выраженная зависимость располагаемой пластичности от времени, причем в диапазоне времен деформирования до 50 ч происходит переход от внутризеренного к межзеренному разрушению. Несколько больший темп охрупчивания характерен для испытаний на ползучесть, однако уже после 25—50 ч разница практически исчезает и происходит стабилизация процесса изменения пластичности. Не наблюдается различия также и в пределах весьма малых времен разрушения.  [c.24]

Примечюте. — доля усталостного повреждения, вычисленная в соответствии с располагаемой пластичностью (1 5 — доля длительного статического повреждения в деформационном выражении Фо —исходная (максимальная) располагаемая пластичность при статическом разрыве Ф (I) — пластичность, соответствующая накопленному времени циклического нагружения.  [c.28]

В форме уравнения (1.2.12) могут быть выражены и описанные выше экспериментальные данные для стали Х18Н10Т при 650° С, полученные на испытательной машине без следяш ей системы нагружения, когда после достижения заданной величины размаха деформаций (напряжений) привод отключается на время высокотемпературной выдержки. Правомочность интерпретации указанных экспериментов в форме, характерной для усталостных испытаний, следует из того, что односторонне накопленная деформация в таких испытаниях невелика по сравнению с располагаемой пластичностью и основная доля повреждения накапливается за счет усталостного повреждения (см. табл. 1.2.1).  [c.33]

Отмеченная выраженная зависимость накопленного повреждения от величины и изменения во времени располагаемой.пластичности может быть продемонстрирована и на примере стали Х18Н9Т (500, 600, 650° С). На рис. 1.2.14 приведены соответствующие данные, когда для расчета использовались величины i[i(i), фщах или фпнп материала. При этом также отмечается систематическое и значительное отклонение экспериментальных данных от линейного правила суммирования повреждений при использовании фтах или фтш.  [c.37]

В общем случае при неизотермическом нагружении диапазон изменения температур может охватывать температуры, для которых зависимость располагаемой пластичности от времени оказывается выраженной, причем интенсивность процесса при максимальных и минимальных уровнях температуры может быть существенно различной. В связи с этим в условиях неизотермично-сти величина располагаемой пластичности становится зависящей от формы температурного цикла.  [c.44]

Таким образом, для оценки термоусталостной прочности материалов необходимо иметь информацию о кинетике циклической и односторонне накопленной деформации, получаемой из экспериментов на термоусталостных установках с непрерывной автоматизированной регистрацией параметров процесса деформирования и нагружения [34, 102, 104], а также получить данные-о располагаемой пластичности и сопротивлении неизотермической усталости с использованием программных установок со следящимп системами нагружения и нагрева, позволяющих воспроизводить, в частности, требуемые режимы неизотермического статического разрыва и жесткого усталостного нагружения в условиях заданной формы цикла нагрева [91].  [c.49]


В работе [103] на изучаемом материале ЭП-693ВД осуществлены испытания на усталость и располагаемую пластичность в изотермических условиях при максимальной температуре термоусталостного цикла 860° С. Испытания выполнены на непрограммной установке (без следящей системы нагружения) типа УМЭ-10Т по методике [162]. На рис. 1.3.6 и 1.3.7 приведены соответствующие данные, показывающие, что для сплава ЭП-693ВД базовые эксперименты могут быть проведены в изотермических условиях при максимальной температуре термического цикла. Полученный результат может быть уверенно использован только для рассматриваемого материала и режима (температура, частота). Для других типов термического цикла и материалов требуется экспериментальное обоснование эквивалентности режимов.  [c.53]

Здесь 84 — необратимая циклическая деформация в к-м полу-цикле нагружения e t) — располагаемая пластичность, определяемая как пластичность при монотонном нагружении или длительная пластичность, зависящая при заданной температуре в первом приближении только от общего времени до разрушения т — константа уравнения Мэнсона — Коффина.  [c.199]

Сопротивление малоцикловой прочности, как известно [1, 2, 41, коррелирует с характеристиками пластичности. Применительно к условиям неизотермического нагружения существенно также, что материал подвергается действию всего диапазона переменных температур в каждом цикле нагружения, а пластичность конструкционных материалов в диапазоне реальных температур цикла нагрева, как правило, довольно не постоянна [1,41, и для многих из них наблюдается провал пластичности , как это, например, следует из рис. 2, а для жаропрочного сплава ЭП-693Д. Следует отметить также, что располагаемая пластичность многих высоколегированных стареющих конструкционных сталей и сплавов связана с эффектом охрупчивания и в связи с этим определяется временем циклического деформирования и длительностью пребывания материала при высоких температурах.  [c.37]

Расположение кривых термической усталости я аропрочных сплавов (см. рис. 4, а, кривые 1—3) также коррелирует с располагаемой пластичностью сплавов при малых числах циклов, когда удельный вес пластической деформации в цикле значителен и ее роль в формировании предельных повреждений существенна, менее долговечным оказывается и менее пластичный сплав ЭП-220 и, наоборот, при больших числах циклов сплав ЭП-693ВД оказывает меньшее сопротивление термической усталости как обладающий несколько меньшей кратковременной прочностью.  [c.40]

Рис. 3. Накопленное повреждение D стали Х18Н10Т (650° С) при оценке в соответствии с зависимостью (6) для располагаемой пластичности е/ (t), полученной при длительном статическом разрыве Рис. 3. <a href="/info/23980">Накопленное повреждение</a> D стали Х18Н10Т (650° С) при оценке в соответствии с зависимостью (6) для располагаемой пластичности е/ (t), полученной при длительном статическом разрыве
Для рассмотренных сталей Х18Н10Т и Х18Н9Т при 650 С экспериментальные данные достаточно хорошо подтверждают расчет по уравнению (9), причем в этом случае константа т оказывается равной 2 (рис. 8). Характерно, что опытные данные, полученные при больших временах до разрушения, укладываются на прямую, вычисленную для минимальной величины располагаемой пластичности б/ (4). В диапазоне времен, приводящих к стабилизации располагаемой пластичности материала, не наблюдается снижения долговечности, более интенсивного, чем при расчете по уравнению (9).  [c.47]

Таким образом, применяя метод оценки долговечности в условиях длительного повторного нагружения, можно определить скорость накопления повреяодений в зависимости от типа напряженного состояния, режима нагружения и свойств конструктивного материала, а следовательно, прогнозировать место разрушения. В качестве базовых данных при оценке долговечности используют кривые длительной малоцикловой усталости и располагаемой пластичности конструкционного материала. При анализе кинетики НДС в рассмотрение вводят диаграммы длительного циклического деформирования и кривые циклической ползучести. Б этом случае сопротивление деформированию характеризуется соответствующими мгновенной и изохронными кривыми деформирования.  [c.11]

Рис. 1.10. Кривые располагаемой пластичности материала для основных режимов термомеханического нагружеяия в условиях постоянных (а и в) и циклически меняющихся (б и г) температур Рис. 1.10. Кривые располагаемой <a href="/info/5932">пластичности материала</a> для основных режимов термомеханического нагружеяия в условиях постоянных (а и в) и циклически меняющихся (б и г) температур

Смотреть страницы где упоминается термин Пластичность располагаемая : [c.33]    [c.37]    [c.45]    [c.52]    [c.42]    [c.4]   
Расчеты деталей машин и конструкций на прочность и долговечность (1985) -- [ c.102 , c.104 , c.107 , c.113 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте