Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Автоматизация Структурный синтез

При автоматизации конструкторского проектирования значительные трудности возникают на этапе формализации. задач конструирования. Во многих случаях удается получить математические модели конструирования, которые допускают использование лишь приближенных алгоритмов решения. В основном задачи конструирования сводятся к задачам структурного синтеза.  [c.5]


Объем решаемых на каждом этапе задач настолько велик, что проведение исследований в полном объеме невозможно без средств автоматизации проектирования. При этом на различных этапах к разработкам привлекаются различные специализированные коллективы научных работников и инженеров. Следует отметить, что при проектировании отдельных элементов, устройств и подсистем, входящих в состав проектируемого сложного объекта, следует проводить их анализ и синтез на различных уровнях. В процессе проектирования приходится учитывать существующие многократные перекрестные связи между элементами, что существенно усложняет задачу структурного синтеза.  [c.307]

Дальнейшее развитие САПР-И будет идти в нескольких направлениях, В первую очередь, будет усложняться структура САПР-И за счет более глубокой интеграции ее в общую структуру САПР ТП. Проектирующие модули должны стать более универсальными, что обеспечит уменьшение их количества при усложнении схемы взаимодействия. Будет совершенствоваться используемый математический аппарат и алгоритмы с целью повышения общности проектирования, создания многономенклатурных систем. Такие изменения основных компонентов САПР-И, а также включение в нее новых модулей (САПР ТП инструмента, САПР приспособлений и др.) должны обеспечить комплексную автоматизацию процесса разработки технологического процесса проектирования и изготовления изделий заданного качества, включая все виды инструментального, метрологического и прочего обеспечения. Должна быть расширена область задач, решаемых в автоматическом режиме, в первую очередь задач структурного синтеза, что позволит находить новые конструкторские решения.  [c.559]

Структурный синтез — наиболее трудная для формализации проектная процедура. В существующих САПР в большинстве случаев синтез выполняет человек, а ЭВМ используется для верификации предлагаемых вариантов. Дальнейшее повышение степени автоматизации проектных работ определяется в первую очередь успехами в постановке и алгоритмизации структурного синтеза.  [c.52]

Системы искусственного интеллекта. Средства САПР, ориентированные на автоматизацию процедур структурного синтеза, в той или иной мере опираются на идеи и методы искусственного интеллекта. Искусственный интеллект — это наука о знаниях, способах их получения, представления, переработки и использования в искусственных системах. Системы искусственного интеллекта (СИИ) оперируют знаниями, другие информационные системы — данными. Знания от данных отличает заложенная в них возможность интерпретации содержания и получения новых данных.  [c.54]


Автоматизация схемотехнического проектирования предполагает решение на ЭВМ задач выбора конфигурации электронной схемы (структурный синтез) предварительного расчета параметров элементов схемы на основе упрощенных формул и соотношений определения выходных параметров схемы в зависимости от изменения внутренних и внешних параметров (одновариантный и многовариантный анализ) определения значений внутренних параметров схемы, обеспечивающих наилучшие значения выходных параметров (параметрическая оптимизация). Автоматизированное решение задач анализа и оптимизации основано на инвариантных методах и алгоритмах (см. гл. 2, 3). Специфика математического обеспечения схемотехнического проектирования проявляется в моделировании элементов электронных схем и анализе конкретных типов проектируемых схем.  [c.128]

Автоматизация проектирования и системный подход явились в наше время главной причиной того, что традиционный метод технического синтеза перестал соответствовать современным задачам конструирования. Чертежный способ, отлично зарекомендовавший себя на уровне компонентов, оказался совсем неэффективным на уровне проектирования систем [17]. Основная трудность проектирования в настоящее время заключается в том, что для системных задач анализа и синтеза нет ни одного метода отображения конструктивной информации, который мог бы выполнить, подобно чертежу, роль структурообразующего звена поисковой деятельности. В традиционных задачах проектирования по прототипам вокруг графической модели, как около некоторого структурного центра, разворачивался интеллектуальный процесс поиска решения. Сейчас роль такого системообразующего стержня деятельности должна взять на себя информационная система (база данных) ЭВМ.  [c.15]

Таким образом, обучение студентов методам пространственно-графического формообразования технических структур является необходимым условием развития у них компьютерного мышления. Необходимость дидактической разработки целостной структуры курса пространственно-графического моделирования на базе ЭВМ диктуется быстрыми темпами развития автоматизации проектирования. На сегодняшний день наглядные изображения играют вспомогательную роль, используются в основном как иллюстрация, поясняющая текст или чертеж в ортогональных проекциях. В современном учебном процессе не уделяется должного внимания структурно-геометрическим основам наглядных изображений, формированию требуемых навыков пространственно-графического формообразования. Лишь небольшое количество студентов может успешно справиться с задачами графического анализа и синтеза объемно-пространственных структур.  [c.159]

Большинство технологических, конструктивных, компоновочных и эксплуатационных параметров автоматизированных систем машин выбирают на основе таких разделов науки о машинах, как теория производительности машин, теория надежности машин, инженерная теория экономической эффективности, теория автоматического управления и регулирования, теория структурного построения машин-автоматов и их систем, теория оптимального синтеза и т. д., которые в совокупности и составляют научно-теоретические основы комплексной автоматизации. Инженеры, занятые проектированием и эксплуатацией автоматизированного оборудования, должны владеть системным подходом при поиске оптимальных решений многовариантных задач автоматизации производства. При выработке такого подхода во многом может быть полезен материал предлагаемой книги.  [c.5]

В последние годы много внимания уделяется использованию цифровой вычислительной техники для автоматизации выбора структурных схем и параметров машин и механизмов в целях наилучшего удовлетворения принятым критериям качества с учетом ограничений. Исследования в области проектирования механизмов ведутся по разным направлениям методами синтеза по заданным положениям, методами математического программирования и др.  [c.139]


Среди многочисленных и разнообразных задач, решаемых на стадии эскизного проекта, наибольший интерес и трудность для автоматизации их решения представляют геометрические и графические задачи конструирования разработка граф — схем абстрактного вида (структурных, логических и т. п.), синтез функциональных схем (кинематических, радио-, электро- и т. п.), выбор элементов конструкции и размещение их на плоскости или в пространстве (компоновка), а также задачи машинной графики, под которой понимается совокупность средств и приемов автоматизации кодирования, обработки и декодирования графической информации [49].  [c.71]

При синтезе структурной схемы, так же как и при синтезе принципиальной схемы, возможно множество вариантов, определяемых как уровнем автоматизации (уровень механизации и количеством потоков информации, использование которых механизируется), так и принципами и средствами решения вопросов контроля, управления и блокировки.  [c.43]

Для решения задачи поиска оптимального варианта автоматизации технологических процессов необходима разработка методов формального описания и исследования технологических процессов и структуры машин-автоматов (25, 28—30, 78, 107, 118, 121]. Использование методов м атематической логики, тео- рии алгоритмов, теории конфликтных ситуаций, линейного и динамического программирования, а также современных мощных вычислительных средств позволяет изыскивать принципиально новые варианты технологических процессов и находить при синтезе машин-автоматов и автоматических линий оптимальные с точки зрения производительности, экономичности и надежности структурные решения.  [c.5]

На первых трех уровнях автоматизации проектирования представленная структурная схема будет описывать полную математическую модель, где методом варьирования является метод проб и ошибок, а в обратной связи соответствующий способ моделирования или расчета. Последующие четыре уровня будут иметь по две математические модели модель синтеза и модель анализа, причем для модели анализа будут использованы только блоки обратной связи.  [c.26]

Однако имеются и примеры успешной автоматизации структурного синтеза в ряде приложений. Среди них заслуживают упоминания в первую очередь задачи конструкторского проектирования печатных плат и кристаллов БИС, логического синтеза комбинационных схем цифровой автоматики и вьгшслитель-ной техники, синтеза технологических процессов и управляющих программ для механообработки в машиностроении и некоторые другие.  [c.171]

Классификация задач структурного синтеза. Процедуры структурного синтеза относятся к наиболее труд-ноформализуемьш в процессе проектирования. В то же время дальнейшее повышение степени автоматизации  [c.68]

В первом разделе приведены статьи по технико-экономическим основам проектирования и производительности линейных и роторных машин и линий обработки и сборки, оптимизации синтеза принципиальных структурных схем машин и линий дискретного и непрерывного действия, циклограммированию, динамике межоперационных передач в роторных линиях, теории размерных цепей, теории и средствам автоматизации управления, автоматической ориентации и загрузке машин, технической диагностике, биоманипуляторам и пр.  [c.2]

Васильев Г. Н. Структурно-компоновочный синтез ыехаиизмов и узлов металлорежущих станков. Тезисы докладов всесоюзной научно-технической конференции Современные пути повышения прЬизводительностя н точности металло- рабатывающего оборудования и автоматизация технологических процессов в машиностроении (секция Автоматизация производственных процессов ). М. Станкин, 1980, с. 1 22.  [c.274]

Следующим этапом проектирования привода является решение задач динамического синтеза [24, 27, 38]. Для воспронзведепия заданного закона движения рабочих органов исполнительных устройств или заданного времени срабатывания выбирают параметры исполнительных и распределительных устройств, а также параметры линий связи. Затем по каталогам и нормалям выбирают элементы всего привода. Так как параметры стандартных и нормализованных элементов могут значительно отличаться от полученных при синтезе, то следующим этапом является определение времени рабочего цикла или закона движения рабочего органа. Это задача динамического анализа, которая дает возможность выяснить, удовлетворяет ли спроектированная система требуемому быстродействию. Если не удается осуществить заданные закон движения или время срабатывания с требуемой точностью, то задачу решают, используя другие средства автоматизации. В случае положительного решения задачи проводят структурный (логический) анализ привода с целью упрощения его структуры благодаря использованию динамических свойств и особенностей системы. Так, например, вместо специальных устройств для выдержки времени в приводе можно использовать трубопроводы в зависимости от типа аппаратуры (распределители одно- или двустороннего действия) можно сократить количество линий связи [16] и т.д.  [c.18]


Смотреть страницы где упоминается термин Автоматизация Структурный синтез : [c.112]    [c.112]    [c.113]    [c.121]    [c.57]    [c.14]    [c.112]   
Справочник технолога-машиностроителя Т2 (2003) -- [ c.431 , c.432 , c.433 , c.434 , c.435 ]



ПОИСК



Синтез

Синтез структурный



© 2025 Mash-xxl.info Реклама на сайте