Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Агрессивные серная

Коррозионная агрессивность серной кислоты сильно зависит от концентрации. На рис. 1.12 показана скорость коррозии углеродистой стали в водных растворах серной кислоты различной концентрации при температуре кипе-  [c.36]

ДОЛЖНЫ иметь нижних сливных трубопроводов. Мерники кислоты и щелочи должны обеспечивать хранение 2—3-су-точного запаса реагентов для регенерации ионитных фильтров. Баки хранения, цистерны и мерники реагентов должны быть оборудованы манометрами, вакуумметрами и устройствами для измерения уровня. В связи с высокой агрессивностью серной кислоты затруднения при поисках надежных конструктивных датчиков для измерения уровня в емкостях хранения и расхода были решены применением радиоизотопных уровнемеров УР-8М, поставляемых фирмой Изотоп .  [c.76]


Фундаменты, подвергающиеся действию кислот сильной степени агрессивности (серной, соляной, азотной и др.), должны возводиться  [c.174]

Для подшипников, работающих в химически агрессивных средах, наибольшее применение получила сталь Х18 (0,9—1,0% С, 17—19% Сг, остальное марганец, кремний, сера, фосфор и т. д, в обычных пределах). Высокое содержание хрома необходимо для придания стали высокого сопротивления коррозии. Сталь обладает высокой коррозионной стойкостью в пресной и морской воде, в растворах азотной и уксусной кислот, в различных органических средах, но имеет плохую стойкость в смеси азотной и серной кислот.  [c.408]

Для производства синтетических неметаллических материалов (пластмассы, стеклопластики, стекловолокно и т. д.), удобрений, а также других химических продуктов аппаратуры, установки и машины работают в агрессивных кислотных средах, чаще в серной, соляной, азотной или фосфорной кислотах и их смесях разной концентрации и при разных температурах.  [c.497]

На возникновение коррозионного растрескивания металлов и на его интенсивность оказывают большое влияние характер агрессивной среды, ее концентрация, температура, структурные особенности металла и др. Наибольшее число разрушений аппаратов из углеродистых и низколегированных сталей наблюдается в растворах щелочен, азотнокислых солей, влажном сероводороде. Известны также отдельные случаи разрушения этих сталей в азотной кислоте, смеси азотной кислоты с серной кислотой и других средах.  [c.102]

Коррозионная стойкость оловянистых бронз немного выше стойкости меди в ряде агрессивных сред, в частности в серной кислоте невысоких концентраций и в других слабокислых средах, в морской воде, в щелочных растворах (исключая аммиачные) и др.  [c.250]

Сплавы титана, содержащие алюминий и хром, обладают в 3 н. растворе соляной кислоты при 15° С и в I 1. растворе серной кислоты при 50° С меньшей коррозионной стойкостью, чем нелегированный титан с повышением содержания в этих сплавах хрома и алюминия скорость их коррозии увеличивается. Наиболее эффективно способствуют повышению коррозионной стойкости титана в ряде агрессивных растворов добавки Мо, Та, N5,  [c.286]

С целью изучения взаимодействия поверхности органосиликатных покрытий с агрессивными средами испытывали эти покрытия над раствором олеума при повышенных температурах (100—180° С), в потоке серного ангидрида и в растворах серной кислоты (10-, 15- и 80%-ных). Применение методов рентгенофазового и ИК-спектроскопического анализов позволило установить неизменность неорганических компонентов органосиликатных покрытий. Химический анализ показал, что в органосиликатных, кислотостойких покрытиях после проведенных испытаний имеет место потеря углерода, наблюдается зависимость величины потери углерода от времени выдержки образцов покрытий в агрессивных средах. При этом в поверхностном слое покрытия (20— 30 мкм) величина потерь углерода больше, чем в нижележащих слоях (на 2—15% в зависимости от продолжительности испытания).  [c.18]


Серный ангидрид - продукт сжигания в топках котлов содержащего серу топлива (мазутов, угля и т. д.), является наиболее коррозионно-агрессивным агентом, вызывающим основные коррозионные разрушения котельного металла, контактирующего с дымовыми газами [19].  [c.91]

Тонкую пленку на полированной металлической поверхности можно создать при воздействии паров брома, иода или сероводорода. В эксикатор, наполненный концентрированной серной кислотой, опускают несколько кристаллов иода и исследуемый металл (медь, свинец, серебро и таллий). Благодаря взаимодействию паров иода создается интервал окрашивания. Каждый цвет определяется толщиной полученного йодного слоя. Этот способ из-за агрессивности среды применяется редко.]  [c.19]

Широко используют органосиликатные материалы на химических и горнорудных предприятиях Белоруссии и Прибалтики для защиты строительных конструкций, оборудования и коммуникаций, эксплуатируемых в атмосфере, содержащей такие агрессивные газы, как окислы серы, азота, пары серной, соляной, азотной кислот, аммиак, промышленную пыль, частицы хлористых и сульфатных солей.  [c.42]

Молибден обладает высокой коррозионной стойкостью в ряде агрессивных восстановительных сред, во многих из них практически не уступая танталу. Молибден стоек в кипящей серной кислоте до концентрации 60%  [c.49]

Кроме работ по исследованию коррозионной стойкости отдельных тугоплавких металлов в самых различных агрессивных средах (основные результаты этих работ приведены выше), проводились также работы, целью которых бьшо сопоставление коррозионной стойкости тугоплавких металлов. При этом в качестве агрессивных сред использовали основные промышленные кислоты серную, соляную, азотную и фосфорную.  [c.52]

Видно, насколько различаются тугоплавкие металлы по коррозионной стойкости в такой агрессивной среде, как кипящая серная кислота.  [c.53]

По коррозионной стойкости в кипящей фосфорной кислоте, согласно данным работ [51-54] (рис. 46), тугоплавкие металлы можно расположить в той же последовательности, что и при испытаниях в кипящих серной и соляной кислотах. Впрочем, фосфорная кислота — менее агрессивная  [c.54]

Нпзкомолскулярные органические кислоты, а также углекислый газ, образующиеся при сгорании топлива, растворяясь в воде, вызывают коррозию, а, следовательно, и износ. В камере сгорания образуются окислы азота, которые с водой образуют высококоррозионные кислоты. Проблема коррозионного износа в двигателях стала особенно острой в связи с применением высокосернистых топлив. Окислы серы, образующиеся при сгорании, соединяясь с водой, дают агрессивные серную и сернистую кислоты, значительно способствующие износу.  [c.40]

В кипящей серной кислоте — одной из наиболее агрессивных сред кислотостойкая хромоникельмолибденомедистая сталь может работать при концентрации Н2О4 до 5%, сплав хастеллой (80% Ni, 20% Мо)—при концентрации до 20%, а тантал не подвергается коррозии в кипящей серной кислоте при концентрации до 80% (см. рис. 366).  [c.534]

В неокислительных агрессивных средах защитная пленка на поверхности хромистых сталей не образуется. Этим объясняется то, что в соляной и разбавленных растворах серной кислоты эти стали неустойчивы. В отличие от азотной кислоты, в иеокислительных кислотах при упеличении процентного содержания хрома в сплаве его устойчивость не только не увеличивается, но наблюдается даже ускорение коррозии.  [c.215]

Коррозионная стойкость хромониксльмолибденомсдистых сталей в некоторых агрессивных средах, в особенности в растворах серной кислоты средних концентраций при повышенной температуре, вплоть до 80" С, довольно высока. Влияние легирующих элементов иа коррозионную стойкость этих сталей в серной кислоте сказывается различно, в зависимости от концентрации и температуры среды. Хром повышает коррозионную стойкость в 5—30%-ной серной кислоте при температуре 80 С. Никель и медь повышают коррозионную стойкост1з в 5—60%-но( 1 серной кислоте и особенно в 40—60%-ной при 80° С и в 5— 50%-ной лри температуре до 80° С. Молибден увеличивает стойкость стали в 5—70 /()-пой кислоте при 80° С и в 5—507о-ной при температуре кипения.  [c.230]


В первом случае после действия агрессивной среды взвешивают образцы, обрав все продукты коррозии во-втором — необходимо все прод укты коррозии удалить. Если не удается собрать все продукты коррозии или они удалены не полностью, образец протирают до полного удаления продуктов коррозии. Если их при этом также не удается удалить, то прибегают к травлению поверхности металла такими реагентами, которые растворяют только продукты коррозии, но не металл. В частности, с поверхности алюминия продукты коррозии можно удалять 5%- или 6%-иым раствором азотной кислоты. Для стали можно рекомендовать 10%-иый раствор винно- или лимоннокислого аммония, нейтрализованного аммиаком (температура раствора 25— 100° С) для свинца, цинка и оцинкованной стали — иасьпценный раствор уксуснокислого аммония, нейтрализованный аммиаком для меди и медных сплавов—5%-ный раствор серной кислоты, имеюгций температуру 10—20° С.  [c.337]

Поливнни.тндеих.торид достаточно устойчив во многих агрессивных средах. Практически на него действуют только сильные окислители и некоторые органические растворители (дихлорэтан, серный эфир и др.). Поливипилидепхлорид применяется в виде самостоятельного конструкционного материала и д.тя покрытий.  [c.417]

Графит — это единственный конструкционный неметаллический материал, обладающий высокой теплопроводностью при достаточно высокой инертности в большинстве агрессивных сред, термической стойкостью при резких перепадах температуры, низким омическим сопротивлением, а также хорошими механическими свойствами. Теплопроводность искусственного графита выше теплопроводности многих металлов и сплавов, в частности свинца и хромоникслсвых сталей, в 3—5 раз. По этой причине применение графита особенно эффективно для изготовления из него теплообмеиной аппаратуры, предназначенной для эксплуатации в условиях воздействия таких агрессивных сред, как серная кислота определенных концентраций, соляная и плавико-  [c.449]

Высокохромистые чугуны марок 4X28, 4X32 обладают высокой химической стойкостью в ряде агрессивных сред азотной, серной, фосфорной кислотах, в растворах щелочей, солей, морской воде и др. Хром при таких концентрациях (28%, 32%) образует защитную шюнку СггОз. Микроструктура этих чугунов соответствует микроструктуре доэвтектических белых чугу-нов Наряду с высокой коррозионной стойкостью, чугун имеет высокую износостойкость, жаропрочность, окалиностойкость. При 30% хрома она достигает 1200 с, при 1100 с детали из этого чугуна могут работать до 3000 часов. Прочность не изменяется до 500 С, затем резко падает.  [c.62]

Для работы в соляных средах, растворах серной, азотной, фосфорной кислот применяется никелевый сплав Н70МФ. Сплав ХН65МЗ применяется для работы при повышенных температурах во влажном хлоре, солянокислотных и сернокислых средах, хлоридах, смесях кислот и других агрессивных средах,  [c.99]

Обрабатывающийся резанием, кор-розиоино стойкий сплав, предназначен для изделий, находящихся в контакте с серной, азотной, фосфорной и смешанными кислотами и солями. Жаростойкий сплав в агрессивных условиях. Сплав стоек в морской воде и солесодержащей атмосфере  [c.278]

На этой основе могут быть разработаны кислотоустойчивые покрытия по металлам. Покрытие должно содержать устойчивый в агрессивной среде заполнитель, например ЗнОз или ТЮз, окись хрома и фосфорную кислоту. Такие покрытия можно рекомендовать для защиты титана в концентрированных растворах серной и соляной кислот при нормальных условиях.  [c.10]

Метиловый спирт (метанол) нвлнется той оригинальной средой, которая вызывает коррозионное растрескивание титана, не будучи агрессивной средой для многих других металлов. Специфичность растрескивания титановых сплавов в метиловом спирте наблюдается во многом. С явлением коррозионного растрескивания титановых сплавов в метиловом спирте связано много вопросов, в решении которых до настоящего времени у исследователей нет единой точки зрения. Растрескивание наблюдается у технически чистого титана и ряда сплавов различных композиций на гладких, надрезанных образцах и образцах с наведенной трещиной. Следует отметить большое число зарубежных исследований процесса коррозионного растрескивания титановых сплавов в метиловом спирте. Большинство этих работ освещает химизм процесса природы коррозионного растрескивания титана вообще, роль различных ионов в этом явлении. Кроме чистого метилового спирта, растрескивание вызывают растворы воды в спирте и компаундные системы спирт—галогениды независимо от способов введения ионов (соли или кислоты), мети но л —серная кислота и др.  [c.53]

Лабораторные испытания для выявления пригодности материалов для работы в агрессивных условиях проводят методом погружения в растворы серной кислоты, а также выдержки в парах H2SO4.  [c.90]

В соответствии с рекомендациями покрытия из этих лакокрасочных материалов можно эксплуатировать в пределах от 213 до 373К в атмосфере, содержащей такие агрессивные газы, как хлор, двуокись серы, двуокись азота, хлористый водород, аэрозоль серного ангидрида, озон они стойки к растворам азотной, серной, фосфорной и хромовой кислот, а также едкого натра.  [c.35]

На рис. 41 и 42 представлены данные по коррозионной стойкости различных металлов в кипящей серной кислоте — среде, особенно агрессивной, в которой нержавеющая сталь совершенно нестойка, а никель-молибдено-вый сплав ("хастеллой ) стоек лишь при небольших концентрациях кислоты (см. рис 3). Данные, представленные на рис. 41, заимствованы из работы [38], а на рис. 42 из работ автора с сотрудниками, в которых исследовались сплавы ванадия [51], ниобия [52], молибдена [53] и тантала [54].  [c.52]


Перед коррозионными испытаниями образцы зачищали наждачной бумагой, промьшали, обезжиривали и взвешивали на аналитических весах с точностью г. В качестве агрессивных коррозионных сред использовали наиболее распространенные в химическом производстве неорганические кислоты серную, соляную, азотную и фосфорную. Коррозионные испытания проводили при температурах кипения в стеклянных колбах с обратным холодильником.  [c.59]


Смотреть страницы где упоминается термин Агрессивные серная : [c.160]    [c.38]    [c.133]    [c.131]    [c.469]    [c.308]    [c.228]    [c.229]    [c.257]    [c.309]    [c.322]    [c.419]    [c.432]    [c.434]    [c.445]    [c.305]    [c.70]    [c.243]    [c.192]   
Коррозионная стойкость материалов (1975) -- [ c.282 ]



ПОИСК



Агрессивные среды неорганические серный ангидрид

Агрессивные среды серной кислоте

Агрессивные среды стойкость в серной и азотной

С агрессивная



© 2025 Mash-xxl.info Реклама на сайте