Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема импульсов по отношению

Несущий винт должен эффективно создавать силу тяги, равную весу вертолета. Под эффективностью вертикального полета понимается малая величина отношения мощности, потребляемой несущим винтом, к создаваемой им силе тяги, так как мощность силовой установки и расход топлива пропорциональны потребляемой мощности. Для винтокрылых аппаратов высокая эффективность вертикального полета обусловлена малой нагрузкой на диск (отношение силы тяги винта к площади диска, отметаемого лопастями). По теореме импульсов, подъемная сила несущего винта создается путем ускорения воздуха вниз, так как подъемной силе соответствует равная ей и противоположно направленная реакция, с которой лопасти воздействуют на воздух. Следовательно, воздух в следе несущего винта обладает кинетической энергией, на образование которой при установившемся горизонтальном полете должна быть затрачена мощность силовой установки вертолета. Это индуктивная мощность она составляет абсолютный минимум мощности, требуемой для устойчивого полета, и ее затраты необходимы как для фиксированных, так и для вращающихся крыльев. Установлено, что для винтокрылых аппаратов на режиме висения затраты индуктивной мощности на единицу силы тяги пропорциональны корню квадратному из нагрузки на диск. Следовательно,  [c.17]


Таким образом, энтропия и теплоемкость бозе-газа стремятся к нулю при Г 0 в согласии с теоремой Нернста, а давление его не зависит от объема. В этом отношении бозе-газ сходен с насыщенным паром. Это сходство объясняется тем, что конденсированные атомы в состоянии с о =0 не обладают импульсом и не вносят вклада в давление.  [c.268]

Вышеописанные движения представляют собою хотя и самые простые, однако не единственные установившиеся движения, возможные для твердого тела, когда на него не действуют внешние силы. Мгновенное движение тела в некоторый произвольный момент, согласно хорошо известной теореме кинематики, представляет некоторое винтовое движение для того, чтобы это движение было установившимся, необходимо, чтобы при движении не менялось положение импульса (которое неизменно в пространстве) относительно тела. Для этого необходимо, чтобы ось винтового движения совпадала с осью соответствующего импульсивного винта. Так как общие уравнения прямой линии содержат четыре независимых постоянных, то это условие приводится к четырем линейным соотношениям, которые должны удовлетворяться пятью отношениями и о г р д Г. При рассмотренных здесь обстоятельствах для всякого тела существует, таким образом, просто бесконечная система возможных установившихся движений.  [c.212]

Предположим теперь, что на систему действуют произвольные ударные силы, направление которых остается неизменным в пространстве в течение всего времени их действия. Для этого случая может быть установлена аналогичная теорема применительно к любым трем моментам в процессе удара при условии, что импульс силы на интервале от первого момента до второго составляет известное отношение (скажем, 1 е) с импульсом силы на интервале от второго момента до третьего.  [c.330]

Рассмотренные в предыдутцих параграфах примеры показывают, что аналитический расчет пограничного слоя в большей части случаев очень трудоемок и обычно вообще не может быть выполнен с практически допустимой затратой времени. В связи с этим в тех случаях, когда аналитический расчет не ведет к цели, возникает настоятельная необходимость найти другие способы расчета. Для этой цели пригодны, во-первых, приближенные способы, использующие вместо дифференциальных уравнений интегральные соотношения, получаемые из теоремы импульсов и теоремы энергии. Однако такие способы (они будут подробно рассмот )ены в главах X и XI), хотя и ведут обычно очень быстро к цели, ограничены в своей ТОЧНОСТИ. Другим способом, заменяющим аналитический расчет, является так называемый метод продолжения. Он заключается в следующем профиль скоростей и xQ, у), заданный в сечении XQ, аналитическим или численным путем продолжается на последующие сечения, расположенные ВНИЗ ПО течению. Приемы аналитического или численного продолжения ИСХОДНОГО профиля основаны, как и все ранее рассмотренные решения на дифференциальных уравнениях пограничного слоя, и поэтому в отношении своей ТОЧНОСТИ они равноценны аналитическим решениям.  [c.184]


На первый взгляд можно подумать, что турбулентный пограничный слой на пластине или на любом другом теле можно рассчитать на основании уравнений движения (19.3а) и (19.36) так же, как ламинарный пограничный слой, с той только разницей, что учет сил трения необходимо производить одним из способов, указанных в главе XIX. Однако до настоящего времени такой расчет турбулентного пограничного слоя выполнить невозможно, так как пока мы не знаем, во-первых, характера смыкания турбулентного пограничного слоя с ламинарным подслоем, всегда существующим в непосредственной близости от стенки, и, во-вторых, закона трения в этой переходной области. В этом отношении в более выгодном положении находятся задачи связанные со свободной турбулентностью (глава XXIV), т. е. с такими турбулентными течениями, которые не ограничены какими-либо стенками. Примерами свободной турбулентности могут служить смешение струи с окружающей ее неподвижной жидкостью или размыв следа позади тела. Такого рода чисто турбулентные течения могут быть рассчитаны на основе дифференциальных уравнений в сочетании с эмпирическими законами турбулентного трения. В задачах же, связанных с турбулентным пограничным слоем, интегрирование уравнений движения весьма затруднительно поэтому для расчета турбулентного пограничного слоя пока приходится прибегать главным образом к приближенным методам, сходным с приближенными методами, разработанными для расчета ламинарного пограничного слоя. Приближенные методы для расчета турбулентного пограничного слоя также основаны в первую очередь на теореме импульсов, с успехом используемой для расчета ламинарного пограничного слоя.  [c.571]

Рассмотрение общей задачи о распространении импульса произвольного вида очень упрощается тем, что любую функцию можно представить в виде суммы (вообще говоря, с бесконечным числом членов) некоторых определенных функций. Физически это означает, что произвольный импульс может быть представлен как сумма (бесконечно большого числа) импульсов определенного вида. Подавляющее большинство приемных устройств подчиняется принципу суперпозиции, который означает, что результат нескольких одновременных воздействий представляет собой просто сумму результатов, вызванных каждым воздействием в отдельности. Принцип суперпозиции применим в том случае, когда свойства принимающей системы не зависят от того, находится ли она уже под действием принимаемого возбуждения или нет, а эта независимость всегда имеет место, если воздействие не становится слишком сильным ). Поскольку принцип суперпозиции применим, мы можем заменить произвольный импульс суммой его слагающих и рассматривать действие каждой слагаюпгей отдельно. Рациональный выбор этих слагающих, т. е. рациональный выбор метода разложения сложного импульса, позволяет чрезвычайно упростить рассмотрение задачи. Таким рациональным разложением является разложение на монохроматические волны, т. е. представление произвольной функции в виде совокупностей косинусов и синусов, введенное Фурье. Согласно теореме Фурье любая функция ) может быть представлена с какой угодно точностью в виде суммы синусоидальных и косинусоидальных функций с соответственно подобранными амплитудами, периодами и начальными фазами. При этом, если исходная функция периодична (с периодом Т), то периоды слагающих синусов и косинусов находятся в простом кратном отношении Т, 1 ,Т, /.1Т,. .. (представление в виде ряда Фурье). Если же функция не периодична, то в разложении содержатся не только кратные, но и все возможные периоды (представление в виде интгг-  [c.32]

Пусть система точек с главным ве[<тором количеств двим<с-ния Q подвергается в момент времени t совокупности ударов со стороны внешних по отношению к рассматриваемой системе тел. Применяя к этой системе теорему импульсов (51) и замечая, что по предыдущему импульсы конечных по величине сил могут быть опущены, приходим к следующей формулировке теоремы об изменении количества л в и ж е п и я системы за время ул. а р а  [c.134]

В связи с этим могут возникнуть сомнения в том, что наши рассуждения о заполнении зон имеют отношение к действительности (ведь они связаны и с глубокими частицами). На самом деле существует теорема Латтинжера [5], являющаяся обобщением рмулы Ландау (2.5) для граничного импульса Ферми р . Согласно этой теореме плотность электронов равна  [c.31]



Смотреть страницы где упоминается термин Теорема импульсов по отношению : [c.189]    [c.248]    [c.448]    [c.174]    [c.426]    [c.175]    [c.679]   
Теоретическая механика в примерах и задачах Том 2 Динамика издание восьмое (1991) -- [ c.0 ]



ПОИСК



Отношение

Теорема импульсов



© 2025 Mash-xxl.info Реклама на сайте