Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлы хладноломкость

Фосфор придает металлу хладноломкость, снижает его ударную вязкость. Но для некоторых видов литейных чугунов фосфор полезен, так как снижает температуру плавления чугуна и увеличивает его жидкотеку-честь, что важно при заполнении форм художественного литья.  [c.96]

Мышьяк почти полностью переходит в чугун но сообщает металлу хладноломкость и ухудшает его свариваемость.  [c.96]

Присутствие кислорода в металле шва в виде твердого раствора или включений окислов, в первую очередь сказывается на ухудшении механических свойств наплавленного металла понижаются пределы прочности и текучести, относительное удлинение, ударная вязкость. Кроме того, кислород вредно влияет и на другие свойства металла — снижает стойкость его против коррозии, повышает склонность к старению, делает металл хладноломким и красноломким.  [c.55]


ХЛАДНОЛОМКОСТЬ ТУГОПЛАВКИХ МЕТАЛЛОВ  [c.530]

Несмотря на то что тугоплавкие металлы и их сплавы предназначаются для работы при высоких температурах, их хладноломкость, т. е. наличия у них температуры перехода в хрупкое состояние пмеет важное технологическое и эксплуатационное значение.  [c.530]

При равной степени чистоты металлы с о.ц.к. решеткой значительно различаются между собой (см. рис. 383). Порог хладноломкости для металлов, относящихся к VI группе периодической системы, располагается заметно выше, чем у металлов V группы.  [c.532]

Очистка металла от примесей внедрения снижает порог хладноломкости и является одним из возможных путей повышения пластичности тугоплавких металлов. Глубокая очистка от примесей внедрения является еще сложной технологической задачей.  [c.532]

Металл, подвергнутый холодной обработке давлением, обладает повышенным запасом внутренней энергии и поэтому находится в термодинамически неустойчивом состоянии. В соответствии со вторым законом термодинамики такая система стремится к состоянию с наименьшим запасом свободной энергии. Этот процесс в низкоуглеродистой стали протекает при обычной температуре — так называемое естественное деформационное старение, однако для этого необходимо длительное время. В результате деформационного старения прочность и твердость стали повышаются, а пластичность и особенно ударная вязкость понижаются. Порог хладноломкости сдвигается в область более высоких температур. При повышении температуры (например, при нагреве стали до 100—250° С) этот процесс ускоряется — так называемое искусственное деформационное старение.  [c.87]

Хладноломкость характерна для металлов, имеющих кристаллическую решетку в виде объемноцентрированного куба или гексагональную. К числу их относится большинство черных металлов, в частности стали, а также цинковые сплавы. Проявляется хладноломкость как нри статическом действии нагрузки, так и,в особенности, при динамическом. В качестве примера на рис, 129 приведены  [c.117]

Металлы, кристаллизующиеся в системе куба с центрированными гранями (медь, алюминий, никель, серебро, золото и др.), не обнаруживают хладноломкости ни при каком понижении температуры. Например, алюминий при температуре жидкого азота (—196 С) увеличивает прочность приблизительно в 2 раза, увеличивая одновременно относительное удлинение в 4 раза. Аналогично ведут себя медь и никель. Многие сплавы алюминия, меди, а также некоторые стали не обладают свойством хладноломкости.  [c.118]


Существуют способы оценки склонности металла к возникновению хрупкого разрушения и его сопротивления распространению хрупкой трещины. Наиболее распространенным способом оценки склонности к хрупкому разрушению являются испытания серии образцов Шарпи с V-образным надрезом на ударный изгиб при различных температурах. Критерий оценки — критическая температура перехода от вязкого к хрупкому разрушению 7, или порог хладноломкости (рис.  [c.545]

Первопричиной хрупких разрушений нефтегазохимической аппаратуры является сложность напряженного состояния металла конструктивных элементов корпуса аппарата объемность напряженного состояния, особенно в местах концентраторов напряжений пониженные (хладноломкость) или повышенные (химическая неоднородность и ползучесть) температурные условия эксплуатации и повышенные эксплуатационные нагрузки.  [c.93]

Для обеспечения эксплуатационной надежности сосудов, работающих под давлением при отрицательных температурах, выбор материалов должен производиться с учетом их порога хладноломкости. Существующая методика определения этого показателя (Т 50) несовершенна, а значения ударной вязкости металла, получаемые при испытаниях, не могут служить критерием оценки его хладноломкости.  [c.51]

Хладноломкость характерна для металлов, имеющих кристаллическую решетку в виде объемноцентрированного куба или гексагональную. К числу их относится большинство черных металлов,  [c.126]

В области хрупкого перехода становится практически целесообразным снижение скорости холодной пластической деформации, если порог хладноломкости деформированного металла (сплава) лежит вблизи комнатной  [c.511]

Для количественного сопоставления склонности материалов к хрупкому разрушению в зависимости от температурных условий эксплуатации широко используется способ серийных испытаний на ударную вязкость стандартных образцов с надрезом. По результатам этих испытаний обычно строят температурные зависимости ударной вязкости Ои и доли вязкой составляющей в изломе Fb- Для хладноломких металлов эти зависимости имеют резкий спад, по которому определяют критическую температуру хрупкости Гкр. При более пологих переходах в область хрупкого состояния используют условные приемы определения Гкр по допуску на снижение Дн или Fs- Полученная из испытаний критическая температура хрупкости Гкр(°К) сопоставляется с минимальной температурой металла в условиях эксплуатации Та.  [c.20]

При выборе материала заготовки следует учитывать не только его эксплуатационные свойства, но и его свариваемость. Сварка материала не должна ухудшить работу сварной конструкции в реальных условиях эксплуатации. Например, если конструкция работает При НИЗКИХ температурах, то материал заготовки должен обеспечить после сварки металлу сварного шва и околошовной зоны порог хладноломкости ниже предполагаемой температуры экс-  [c.159]

Обычно к определению пластичности как свойства металлов добавляются существенные ограничения в известных условиях и пределах или лишь при определенных температурах, кроме зон хрупкости, провалов пластичности, красноломкости, горячеломкости, хладноломкости.  [c.12]

Полагают, что хладноломкость является природным свойством металлов, особенно с о. ц. к. решеткой [1], вследствие резкого повышения предела текучести при низких температурах. Причиной хладноломкости считают возникновение или усиление ковалентных связей при понижении температуры. О. ц. к. металлы железо, хром, молибден и вольфрам считают хладноломкими.  [c.20]

Автор работы [8] также считает причиной хладноломкости металлов усиление ковалентных связей и уменьшение металлических связей в металлах при понижении температуры переход от вязкого разрушения к хрупкому обусловлен качественным изменением характера связей при 7 х = 0,225 Гпл. Пластическая деформация может происходить только в металлах и только вследствие наличия ненаправленной металлической связи. Кристаллы с ковалентной или ионной связью не могут пластически деформироваться [8].  [c.20]


Хладноломкость обычно связывают со значительным возрастанием предела текучести при низких температурах, однако у чистого металла она не наблюдается. Критическое напряжение сдвига (КНС) монокристаллов цинка чистотой 99,999 % не повышается даже при охлаждении до 1,4 К, тогда как у цинка чистотой 99,99 % оно возрастает в несколько раз (рис. 17) [1].  [c.47]

Титан нельзя считать хладноломким металлом, как указано в работах хладноломкость обусловлена примесями, в частности водородом [1].  [c.86]

Как правило, хладноломкость характерна для металлов с объемноцентрированной кубической и гексагональной решетками и не свойственна металлам с гранецептрированной кубической решеткой. К числу хладноломких, т. е. подверженных хрупкости на холоду, металлов относятся все черные металлы, включая разнообразные сорта конструкционной стали (фиг. 38), за исключением высоколегированных сталей аустенитного класса. Из цветных металлов хладноломкость обнаруживают цинк и вольфрам (фиг. 39), в меньшей степени магний. Большинство других цветных металлов, включая в их число литой и прессованный алюминий достаточной чистоты, медь, никель и их сплавы, не обнаруживают хрупкости даже при самых низких температурах.  [c.90]

Приведенные в табл. 56 данные показывают, что механические свойства металла швов при сварке порошковыми проволоками находятся примерно на уровне свойств соединений, выполненных электродами типа Э50А но ГОСТ 9467—75. Для сварки ответственных конструкций из низкоуглеродистых и низколегированных сталей можно рекомендовать проволоки ПП-2ДСК и 1Ш-АН4, обеспечивающие хорошие показатели хладноломкости швов.  [c.228]

Для многих металлов, в первую очередь имеющих объемноцснтрирован-ную кубическую или гексагональную решетку, при определенных температурах изменяется механизм разрушения вязкое разрушение при высокой температуре смеияется хрупким. Температурный нитервал изменения характера разрушения называется порогом хладноломкости.  [c.73]

Положение порога хладноломко кости зав1Г ит от многих факторов 1) структуры и размера зерна. В частности, измельчение зерна понижает порог хладноломкости 2) состава металла. Вредное влияние имеют многие загрязняющие металл примеси 3) скорости деформации. Увеличение скорости деформации повышает порог хладноломкости 4) размеров образца (детали). Чем больше сечение, тем выше порог хладноломкости.  [c.74]

Поскольку действие этих элементов на свойства сплава одинаково (ухудшается пластичность за счет подъема порога хладноломкости), то для получения пластичного металла необходимо, чтобы в хроме, моли бдене, вольфраме сумма -j-N + O составляла не более 10- % или не более 0,001%, что представляет собой труднейшую, практически не решенную еще задачу. В ванадии, ниобии и тантале сумма -bN-1-О может быть порядка 0,1 7о (вероятно, 0,05% ), что практически достижимо. Поэтому промышленные хром, молибден, вольфрам (и их сплавы) хрупки, порог хладноломкости лежит выше комнатной тем-пе]затуры, а ванадий, ниобий, тантал пластичны, порог хладноломкости этих металлов лежит ниже комнатной температуры (см. рис. 383).  [c.524]

Если испытывать все тугоплавкие металлы, в том числе молибден и мн-обий, но выше порога хладноломкости, то они чрезвычайно пластичны — F = = 100% (см. рис. 48).  [c.528]

Растворение металлических элементов замещения в молибдене или других металлах в общем случае ухудшает пластичность и повышает порог хладноломкости. Небольшие добавки элементов замещения, играя роль рас-кислителей, могут снижать температуры перехода из пластичного состояния в хрупкое. Такими элементами являются, в частности, алюминий, церий, титан, цирконий, добавка которых в количестве 0,1—0,5% снижает температурный порог хрупкости. Значительное легирование примесями замещения всегда повышает порог хладноломкости. Исключение составляет рений (так называемый срениевый эффект ), который снижает порог хладноломкости молибдена, вольфрама и хрома (рис. 392). Чтобы получить ощутимое положительное влияние рения на свойства металла VI группы, необходимо вводить этот элемент в больших количествах (30—50%).  [c.532]

Значительное в,пияние на порог хладноломкости оказывают структура металла, а следовательно, и режимы деформации и термической обработки.  [c.532]

Порог хладноломкости тугоплавких металлов в рекристаллизованном состоянии, как правило, шачительно выше, чем в деформированном. Трудна- TII при сварке молибдена и вольфрама связаны именно с этим обстоятельством образующаяся при сварке зона литого и рекристаллизованного ме-  [c.533]

Более сложные зависимости критических параметров от температуры наблюдаются у металлов с объемно-центрированной кубической решеткой (ОЦК металлов), для которых типично явление хладноломкости [211, 242]. Впервые весьма подробно исследование поведения ОЦК металлов при различных температурах было сделано в работе [31]. Детальное, обобщающее многие экспериментальные работы, исследование критических характеристик разрушения различных ОЦК металлов с простой структурой проведено в работе [211], где также выполнен фрак-тографический анализ изломов образцов в зависимости от тем-  [c.51]

Понижение температуры практически не изменяет сопротивления отрт.шу 5от (разрушающего напряжения), но повышает сопротивление пластической деформации о.,. (предел текучести). Поэтому металлы, вязкие при сравнительно высоких температурах, могут при низких температурах разруи1аться хрупко. В указанных условиях сопротивление отрыву достигается при напряжениях меньших, чем предел текучести. Точка / пересечения кривых и а,., соответству-юп ан температуре перехода металла от вязкого разрушения к хрупкому, получила название критической температуры хрупкости или порога хладноломкости (/п. х)- Чем выше скорость деформации, тем больше склонность металла к хрупкому разрушению. Все концентраторы напряжений способствуют хрупкому разрушению. С увеличением остроты и глубины надреза склонность к хрупкому разрушению возрастает. Чем больше размеры изделия, тем больше вероятность хрупкого разрушения (масштабный фактор).  [c.53]


Молибден, вольфрам и хром обладают высокой жаропрочностью, однако они клонны к хрупкому разрушению из-за высокой температуры порога хладноломкости, которую особенно сильно повышают примеси внедрения С, N, Н и О. После 1еформации ниже температуры рекристаллизации (1100—1300 °С) порог хладноломкости молибдена и вольфрама понижается. Ниобий и тантал в отличие от вольфрама и молибдена высоко пластичные металлы и хорошо свариваются. Следует указать, что ниобий имеет более низкий порог хладноломкости и менее чувствителен к примесям внедрения. Указанные металлы обладают высокой коррозионной стойкостью, в том числе в кислотах и щелочах.  [c.312]

Оболочки сварных спиральных камер выполняют из прокатной стали таких толщин и марок, которые удовлетворяют условиям прочности. Наиболее желательной по технологическим соображениям является углеродистая сталь МСтЗ, обладающая хорошей свариваемостью и пластичностью, необходимой при холодной гибке и в процессе вальцевания и сборки. При плохих пластических свойствах возникает наклеп и хладноломкость оболочки. Однако при значительных напорах и размерах сечений листы из стали МСтЗ, обладающей сравнительно невысокой прочностью, приходится применять очень толстыми. Это увеличивает массу звеньев, усложняет процесс гибки звеньев и их пригонку при монтаже, увеличивает массу наплавленного металла и трудоемкость изготовления и сборки. В этих условиях в отечественной практике применяются  [c.62]

На основании этих данных для объяснения хладноломкости кристаллических тел вообще и металлов в частности были выдвинуты следующие обобщающие положения 1). неверно делить тела на хрупкие п пластичные. Есть хрупкое и пластичное состояния одного и того же тела, разделенные температурой, при которой предел упругости и временное сопротивле-ние одинаковы (200 °С для ЫаС1) 2) причиной хладноломкости является достижение разрушающего напряжения раньше, чем предела упругости, поскольку при низких температурах он выше первого.  [c.20]

Распространено мнение, что хладноломкость является природным свойством о. ц. к. металлов (например, Fe, Сг, Мо, W, вследствие резкого увеличения их предела текучести при понижении температуры [1]) в отличие от меди, никеля, алюминия и других металлов, имеющих г. ц. к. решетку. Действительно, металлы с г. ц. к. решеткой нехлад -поломки. Однако тантал и щелочные металлы с о. ц. к. решеткой также нехладноломки, чистейшее железо пластично до глубокого охлаждения. С повышением чистоты металлов подгруппы хрома порог хрупкости смещается к низким температурам. Хладноломкость цинка и кадмия обусловлена примесями при чистоте 99,999 % хладноломкость отсутствует. Чистые металлы VA подгруппы также нехладноломки. Хладноломкость у них наблюдается лишь при недостаточно высокой чистоте. Растворимость примесей у металлов VIA подгруппы чрезвычайно мала, и достаточно полная очистка их представляет трудную задачу. Кроме того, при хранении в комнатных условиях они могут поглощать газы из атмосферного воздуха и охрупчиваться.  [c.23]


Смотреть страницы где упоминается термин Металлы хладноломкость : [c.120]    [c.197]    [c.527]    [c.533]    [c.533]    [c.131]    [c.249]    [c.250]    [c.255]    [c.257]    [c.119]    [c.13]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.410 ]



ПОИСК



Взаимодействие с примесями внедрения и хладноломкость тугоплавких металлов

Влияние различных факторов на хладноломкость металлов

Испытание металла хладноломкость

Металл хладноломкий

Металл хладноломкий

Хладноломкость

Хладноломкость металлов и космосе

Хладноломкость тугоплавких металлов



© 2025 Mash-xxl.info Реклама на сайте