Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Среда сплошная вязко-пластичная

В основе М. лежат три закона Ньютона. Первые два справедливы по отношению к т, н. инерциальной системе отсчёта. Второй закон даёт осн. ур-ния для решения задач динамики точки, а вместе с третьим — для решения задач динамики системы материальных точек. В М. сплошной среды, кроме законов Ньютона, используются закона, отражающие свойства данной среды и устанавливающие для неё связь между тензором напряжений и тензорами деформаций или скоростей деформаций. Таковы Дука закон для линейно-упругого тела и закон Ньютона для вязкой жидкости (см. Вязкость). О законах, к-рым подчиняются др. среды, см. в ст. Пластичности теория. Реология.  [c.127]


В середине XX в. в теории пластичности выработаны общие принципы ее построения, и произошло существенное обогащение и развитие основ МСС. Уже в начале столетия стало ясно, что законы упругости и вязкости приближенно представляют уравнения состояния сред лишь в определенных диапазонах параметров движения, но не представляют их, например, в пластической и вязкоупругой области деформаций металлов и полимеров, в области неоднородных турбулентных движений вязких жидкостей и газов с большими скоростями и т. д. Постулатом макроскопической определимости в МСС устанавливается, что в малых макрочастицах любых сплошных сред в момент времени  [c.4]

Так поступают, например, при изучении движения вязкой жидкости, когда напряжения представляют в виде су.ммы давления и вязких напряжений. В теории пластичности, наоборот, раскладывают деформации на обрати.мые упругие е и необратимые пластические и скорость диссипации энергии представляют в виде (1/р)о,уб .у см., например Седов Л. И., Механика сплошной среды, т. II, гл. X, 3, Наука , изд. 2, М., 1973 — Прим. ред.  [c.188]

Вопросами поведения упругопластических сред стали интересоваться в связи с развитием техники обработки металлов. Еще в 1828 г. Коши предложил формулы напряжений в упругопластических средах, полагая, что в зоне пластичности их поведение аналогично поведению вязкой жидкости. С тех пор теория пластичности, изучающая целый комплекс вопросов, связанных с движением пластически деформируемых сред, развилась в весьма обширную область механики сплошных сред.  [c.390]

Анализируя работы по различным разделам механики сплошной среды — теории упругости и пластичности, механике невязкой и вязкой жидкости, газовой динамике и различным обобщениям этих классических частных случаев механики сплошной среды, можно заметить, прежде всего, что средством исследования здесь является главным образом математический анализ и, следовательно, все эти работы вписываются в рамки общей аналитической механики, о которой шла речь в 1. При этом чаще всего сплошную среду рассматривают как свободную механическую систему, неявно применяя аксиому об освобождаемости от связей и заменяя действие внутренних связей их реакциями, которыми, в частности, являются компоненты тензора напряжений Коши. Впрочем, об реакциях обычно не упоминают. Исключение составляют работы [52, 93]. Но эти работы, до известной степени, выходят за рамки классических представлений.  [c.11]


Сплошная среда, для которой наблюдается значимое изменение Т в некотором интервале изменения интенсивности сдвиговых скоростей деформаций Н (вязкое упрочнение) называется вязко-пластичной средой (рис. 43, а). В общем случае реальные металлы обладают деформационным и вязким упрочнением. Поведение таких металлов можно аппроксимировать поведением их моделей. Так, на рис. 42, б показана ахшроксимация кривой (рис. 42, а) при помощи двух линейных участков. Участок АВ соответствует приближенному описанию упругого поведения среды, а участок ВС - пластического. Рядом с диаграммой показана схема ее механического аналога. В схеме растяжению двух пружин до перемещения тела массой т соответствует упругий участок диаграммы, а растяжению верхней пружины - пластический участок. Если участок ВС горизонтален (рис. 42, в), то диаграмма соответствует модели материала, назьшаемой идеальной упруго-птстинной <ред<Л.  [c.154]

Если наша цель состоит в разработке критерия вязкого разрушения в столь же общем виде, как и используемый критерий Гриффитса при хрупком разрушении, то эта цель пока еще не достигнута. Причина состоит в том, что простые модели, которые могут быть описаны теоретически, не соответствуют действительным сложным условиям. Мак-Клинток [62] отметил, что критерий хрупкого разрушения связан только с текущим напряженным состоянием, тогда как при вязком разрыве размеры пустот и их взаимодействие зависят от всей истории изменения напряжений и деформаций образца. Расчет требует количественной оценки каждой из следующих трех стадий возникновение, рост и слияние пор. Дислокационные представления пригодны главным образом для первой стадии, для второй и третьей стадий в связи с большими деформациями необходимы теории пластичности сплошной среды. Эти теории основываются на специальных моделях роста пустот, а критерии разрушения связываются с их слиянием.  [c.76]

Иными словами, твердые тела одновременно обладают некоторым сопротивлением начальной пластической деформации или пределом текучести (в этом их отличие от собственно жидкостей) и существенной зависимостью этого сопротивления от скорости (т. е. вязким поведением, подобно поведению вязких жидкостей). Явление по,тзучести, т. е. постепенного нарастания остаточной деформации во времени при достаточной температуре, есть важнейшее проявление вязко-пластических особенностей материалов. Подобно теориям пластичности (см. п. 5) на основе механики сплошных однородных сред, развиты математические теории ползучести, на основе которых проведены многочисленные расчеты [15]. Они позволили определить кривые релаксации по кривым ползучести (и наоборот), рассчитать ползучесть при сложных напряженных состояниях для труб под внутренним давлением, пластин, оболочек, вращающихся дисков и т. п. Далее, по кривым ползучести при простом напряженном состоянии (обычно при растяжении) и постоянной температуре рассчитана  [c.138]

Сплошная изменяемая среда это понятие применимо, когда при изучении движения изменяемой среды (деформируемого тв. тела, жидкости, газа) можно пренебречь мол. структурой среды. При изучении сплошных сред прибегают к след, абстракциям, отражающим при данных условиях наиболее существ, св-ва соответствующих реальных тел идеально упругое тело, пластич. тело идеальная жидкость, вязкая жидкость, идеальный газ и др. В соответствии с этим М. разделяют на М. матер. точки, М. системы матер, точек, М. абсолютно ТВ. тела и М. сплошной среды. Последняя в свою очередь подразделяется на теорию упругости, теорию пластичности, гидродинамику, аэродинамику, газовую динамику и др. в каждом из этих подразделов в соответствии с хар-ром решаемых задач выделяют статику — учение о равновесии тел под действием сил, кинематику — учение о геом. св-вах движения тел и динамику — учение  [c.414]


Смотреть страницы где упоминается термин Среда сплошная вязко-пластичная : [c.127]    [c.382]    [c.415]   
Механика сплошных сред (2000) -- [ c.154 ]



ПОИСК



Среда вязкая

Среда сплошная



© 2025 Mash-xxl.info Реклама на сайте