Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптические резонаторы плоскопараллельные

Блок ОКГ объединяет обычно все оптические элементы лазера рабочее тело (активный элемент), отражатель, лампы накачки, зеркала резонатора. Рабочее тело вместе с одной или несколькими лампами накачки устанавливается в отражателе, отражательная поверхность которого имеет форму цилиндра или эллипсоида. В качестве ламп накачки применяются ксеноновые, криптоновые импульсные или дуговые лампы. Активный стержень помещается внутри оптического резонатора, представляющего собой, например, два плоских или сферических зеркала либо набор плоскопараллельных пластин.  [c.37]


Основная причина, по которой не удается непрерывно определять температуру по интерферограмме, заключается в тех отклонениях от идеальной плоскопараллельной формы, которые свойственны практически любой пластинке. Малый угол (порядка 10 рад) между поверхностями или шероховатость поверхности приводят к тому, что резонансы Фабри-Перо заметно отличаются от рассчитанных, не учитывающих неидеальность поверхности зеркал и юстировки оптического резонатора. При термометрии неидеальной пластинки остается неизменной локализация резонансов на температурной оси, но их форма и амплитуда изменяются. По этой причине определение температуры приходится проводить только для моментов времени, соответствующих экстремумам интерферограммы.  [c.167]

Если же в результате поглощения света вспышки и последующих безызлучательных переходов на уровне ег накопится более половины всех ионов, то между уровнями е1 и ег возникает инверсия населенностей N2>N ). Такой механизм ее образования называют оптической накачкой. Если рубиновый стержень помещен во внешний оптический резонатор или имеет посеребренные плоскопараллельные торцы, в нем возникает короткий импульс лазерной генерации на длине волны 694,3 нм. Лазерный импульс имеет сложную временную структуру и состоит из нерегулярной последовательности отдельных импульсов длительностью около 1 мкс. Из-за малой длительности импульса (порядка 1 мс) мощность рубинового лазера в импульсе достигает нескольких киловатт при сравнительно небольшой энергии (несколько джоулей).  [c.452]

В 1897 г. С. Фабри и А. Перо [10] впервые использовали плоскопараллельный оптический резонатор в качестве интерферометра. С тех пор эти резонаторы интенсивно применяются для спектрального анализа сверхтонкой структуры и в точных метрологических измерениях [56, 57]. Изобретение лазера привело к бурному росту теоретических и экспериментальных работ по изучению свойств и применений резонаторов. Можно встретить резонаторы, имеющие зеркала с произвольными фокусными расстояниями и зазором между ними от нескольких миллиметров до нескольких метров. В многочисленных разделах данной главы мы представили результаты этих работ. Однако в этом разделе мы обсудим главные особенности плоскопараллельных резонаторов, поскольку они находят широкое применение именно как интерферометры.  [c.561]

Избирательность заселения фотонных состояний и обеспечивает в лазере оптический резонатор. Возможность положительной обратной связи, содержащаяся в явлении вынужденного излучения, осуществляется в квантовом генераторе с помощью резонатора (16], с. 315). Прежде всего резонатор выделяет в пространстве определенное направление, в котором преимущественно происходит генерация. Кроме того, резонатор осуществляет селекцию по частоте и поляризации излучения. Часто используемые в резонаторах плоскопараллельные пластинки, ориентированные под углом Брюстера к оси резонатора, как раз и обеспечивают избирательность по поляризации генерируемых фотонов. Можно сказать, что выделение определенных фотонных состояний, в которых и осуществляется преимущественно генерация излучения, — принципиальная функция оптического резонатора. Чем жестче обеспечивает резонатор избирательность заселения фотонных состояний, тем выше когерентные свойства лазерного излучения (выше направленность, монохроматичность, степень поляризации).  [c.104]


Расходимость луча твердотельных лазеров с плоскопараллельным резонатором по мере повышения оптического качества лазерных материалов оказывается все ближе к пределу, обусловленному дифракцией. Но даже для рубинового лазера, оптические свойства которого были наиболее высокими, необходимо еще значительное повышение оптического качества кристаллов, прежде чем его пучок приблизится по своей расходимости к пучкам газовых лазеров.  [c.72]

Рис. 5.19. Оптические схемы ИГ с плоским резонатором 1 — полупрозрачная плоскопараллельная пластина 2 — поглощающий экран Рис. 5.19. <a href="/info/4760">Оптические схемы</a> ИГ с <a href="/info/185735">плоским резонатором</a> 1 — полупрозрачная <a href="/info/191855">плоскопараллельная пластина</a> 2 — поглощающий экран
Дифракционный интеграл Кирхгофа — Гюйгенса. Рассмотрим оптическую систему из двух параллельных плоскостей, отстоящих друг от друга на расстояние Ь (плоскопараллельный резонатор длиной L) см. рис. 2.28. Пусть световое поле на левой плоскости (плоскость Р ) описывается в скалярном приближении некоторой функцией и (Р . Распространяясь слева направо, поле достигнет правой плоскости (плоскость Ра), на которой оно будет описываться уже какой-то другой функцией — функцией о (Ра). Теория дифракции позволяет выразить функцию V через и. Для этого можно воспользоваться следующим интегралом, представляющим собой модификацию дифракционного интеграла Кирхгофа — Гюйгенса (см. [7])  [c.141]

На рис. 2.4 показаны открытые резонаторы, применяемые в оптических генераторах. Эти резонаторы образованы плоскопараллельными или сферическими зеркалами, изготавливаемыми т кварцевой подложки, на которую отражающие покрытия наносят  [c.35]

ЛПМ Криостат с условным обозначением ЛПМИ-75 в 1975 г. демонстрировался на Международной выставке в Мюнхене (Германия). Лазер использовался в основном для накачки перестраиваемого по длинам волн ЛРК типа ЛЖИ-504 (Л = 530-900 нм). Основные параметры ЛПМ Криостат следующие оптимальная ЧПИ 10 кГц, средняя мощность излучения 3-6 Вт, диаметр пучка излучения 12 мм, время готовности 60 мин, мощность, потребляемая от выпрямителя ИП-18, 2,3-2,5 кВт (питание от трехфазной сети), минимальная наработка АЭ не менее 200 ч, срок сохраняемости 5 лет, габаритные размеры АЭ диаметр и длина 80 и 1300 мм, масса 5 кг, для излучателя размеры 1680 х 240 х 300 мм и масса 50 кг, и для ИП-18 — соответственно 600 х 600 х 1700 мм и 350 кг. Излучатель включает в себя АЭ ТЛГ-5 с коаксиальным кожухом охлаждения, несущий алюминиевый двутавр и зеркала оптического резонатора с механизмами юстировки на торцах. Глухое вогнутое зеркало резонатора с многослойным диэлектрическим покрытием (коэффициент отражения превышает 99%) имеет радиус кривизны i = 5 м, выходное зеркало представляет собой плоскопараллельную пластину из стекла К8 с коэффициентом отражения 8%. Источник питания ИП-18 состоит из блока высоковольтного трансформатора и выпрямителя, блока регулировки напряжения, подмодулятора, высоковольного модулятора, блока вентиляторов и системы водяного охлаждения. Высокие удельные массогабаритные показатели (на единицу мощности) выходного излучения являются одним из заметных недостатков этого ЛПМ.  [c.30]

Первое упоминание об изучении плоскопараллельного резонатора появилось в классической работе Шавлова и Таунса [5], в которой они предложили распространить принцип действия мазера на диапазон оптических частот. Шавлов и Таунс рассмотрели эту задачу, используя аналогию с закрытым прямоугольным резонатором, моды которого хорошо известны (см. разд. 2.2).  [c.187]

Именно подобные соображения в пользу применения открытого резонатора из двух плоскопараллельных зеркал были выдвинуты Шавловым и Таунсом в 1958 г. [197] чуть раньше предложили использовать такой резонатор для осуществления генерации в оптическом диапазоне Прохоров [127] и Дике [156],  [c.61]


Ниже мы приводим результаты расчетов некоторых характеристик волноводных резонаторов ГЛОН, полученных с помощью решения уравнения (3.75) и их анализа, которые позволяют оптимизировать выбор этого типа резонатора в ГЛОН [33, 34]. Решить уравнение (3.75) можно только приближенно, используя численные методы с применением ЭВМ, либо методом теории воз-муш,ений в случае малого отличия геометрии резонатора от плоскопараллельной, когда характеристики его типов колебаний близки к характеристикам мод бесконечного полого волновода. Рассмотрим волноводный резонатор, у которого di — d.2 О, т. е, зеркала резонатора рассматриваются без отверстий связи. Такая постановка задачи позволяет рассмотреть влияние кривизны зеркал волноводного резонатора на характеристики его типов колебаний. Кроме того, этот случай представляет интерес для волноводных систем с элементами связи в виде полупрозрачных зеркал или в виде окон в боковой поверхности волновода, которые можно использовать в оптических системах ГЛОН (см. рис. 3.12). Исходное уравнение (3.75) значительно, упрощается, так как при di == О, Ф (г) = 1. Кроме этого значительно упрощается параметр Dig. Если обратиться к формуле (3.77), то нетрудно видеть, что интеграл в этом выражении можно представить Г1 г 1  [c.167]

Для исследования спектра мод лазеров в диапазоне длин волн от 2000 А до 0,4 мм могут применяться спектрографы и интерферометры Фабри — Перо. Обычно только методы оптического гомодинного или гетеродинного приема способны обеспечить разрешение, требуемое для наблюдения угловых мод в резонаторах с плоскопараллельной конфигурацией и зееманов-ских компонент в газовых лазерах. Большинство приемников в инфракрасной области (особенно в далекой инфракрасной) обладает очень плохой высокочастотной характеристикой. Поэтому длинноволновая граница применимости данных методов равна примерно 40 ж/с, т. е. границе для приемников из Ge Au, Zn. Постоянная времени таких приемников меньше 10" сек, и, следовательно, в инфракрасной области методом гетеродинирова-ния можно разрешить частоты до 100 Мгц. Но детальные измерения в инфракрасном диапазоне пока что проведены только для нескольких систем, а о работах, выполненных с длинами волн, большими 2,6 жк, почти не сообщалось.  [c.89]

Блок-схемы экспериментальной установки для измерения пространственных, временных и энергетических характеристик излучения ЛПМ представлены на рис. 4.1. Испытания проводились в основном с отпаянным саморазогревным АЭ ГЛ-201 (см. гл. 2), часть исследований — с удлиненным АЭ ГЛ-201Д (см.гл.З). Характеристики выходного излучения АЭ ГЛ-201 исследовались в режиме без зеркал, с одним зеркалом, с плоским и плоско-сферическим резонаторами и с телескопическим HP. В плоском резонаторе в качестве глухого зеркала 3 использовалось зеркало с многослойным диэлектрическим покрытием, в качестве выходного 4 — стеклянная плоскопараллельная пластина без покрытия (коэффициенты отражения зеркал 99% и 8% соответственно). Вогнутое диэлектрическое зеркало с радиусом кривизны R = 3 м (диаметр 35 мм) и коэффициентом отражения 99% и стеклянная плоскопараллельная пластина образовывали плоскосферический резонатор длиной 1,5 м. Зеркало с радиусом кривизны R = 3 м использовалось в качестве глухого зеркала и в телескопическом HP с коэффициентом увеличения М = 10-300. Выходными зеркалами в HP служили выпуклые зеркала с диэлектрическим или алюминиевым покрытием, имеющие диаметр 1-2,5 мм и радиус кривизны R = 10-300 мм. Эти зеркала наклеены на просветленную плоскопараллельную стеклянную подложку так, что оптическая ось зеркала образует с плоскостью подложки угол не менее 94°. Последнее необходимо для устранения обратной паразитной связи подложки с активной средой АЭ. При коэффициентах увеличения М = 15-60 в качестве выходных зеркал резонатора использовались и стеклянные мениски диаметром 35 мм. При М — 5 глухое вогнутое зеркало имело R — = 3,5 м, а выходное выпуклое — 0,7 м. В режиме работы с одним зеркалом применялись выпуклые зеркала с Д = 0,6-10 см. Средняя  [c.108]

Структурная схема установки представлена на рис. 7.15. В ЛПМ Курс применяется плоский резонатор. Средняя мощность излучения в полезном пучке с расходимостью 4 мрад составляет 14-15 Вт. Пучок излучения диаметром 20 мм с помощью двух поворотных плоских зеркал 2 направляется на линзу 6. Линза фокусирует пучок ЛПМ в кювету ЛРК, в котором производится перестройка частоты в красную область (0,62-0,7 мкм). Вращающаяся кювета с рабочим раствором представляет собой две плоскопараллельные оптические пластины, укрепленные герметично в корпусе и разделенные зазором, в котором находится раствор красителя — активная лазерная среда. Ирисовая диафрагма 4 позволяет регулировать мощность излучения, а электромеханический затвор с плоским зеркалом 3 — перекрывать пучок излучения ЛПМ. Пучок излучения от ЛРК после поворота зеркалом 8 фокусируется линзой 9 на входной торец световода 10. С помощью световода излучение передается на биологический объект (например, на кожу) для проведения фотодинамической терапии. Измерение мощности излучения производится с помощью преобразователя мощности лазерного излучения ТИ-3 и милливольтметра М136 13 и 14).  [c.199]

Резонатор, образованный двумя плоскими параллельными отражающими поверхностями, был первым использован в лазерной технике. В настоящее время применение плоскопараллельного резонатора ограничено высоким уровнем дифракционных потерь и чрезвычайной критичностью к разъюстировке. В лазерной технике большее распространение находят сферические резонаторы. Заметим, что зачастую в тех случаях, когда используются плоские зеркала, в твердотельных приборах вследствие конечной велйчины оптической силы активного элемента резонатор оказывается по своим характеристикам эквивалентен сферическому (гл. 6). Использование плоских резонаторов оказывается целесообразным, когда важно обеспечить максимальный объем моды (см. 3.7) и минимальную расходимость возбуждаемых волн без существенного увеличения потерь. Знание свойств плоскопараллельного резонатора важно и в ме тодическом плане для понимания асимптотики характеристик собственных волн произвольного резонатора при приближении его конфигурации к границам области устойчивости.  [c.66]


Как мы уже отмечали во введении, многослойные диэлектрические покрытия широко используются в настоящее время в оптических приборах. Типичный пример — диэлектрические зеркала в лазерных резонаторах, полностью отражающие или обеспечивающие вывод части излучения. Все такие устройства принадлежат к классу мультислоев. Но все же главной их особенностью является то, что размер неоднородности в них сравним с длиной волны. Вследствие этого их нельзя исследовать развитым выше методом, основанным на переходных функциях. Требуется развитие нового подхода, который позволил бы учесть эффекты многократного отражения на последовательности поверхностей разрыва, разделяющих отдельные диэлектрические слои стопы. Задачу можно упростить, если пренебречь конечностью поперечных размеров. В частности, пропускание мультислоя можно вычислить, считая радиус зеркала бесконечным. Возникающая при этом ошибка невелика. Кроме того, можно предположить, что показатель преломления постоянен по всей толщине каждого из слоев и резко изменяется лишь при переходе через границы раздела. Более общая ситуация рассмотрена в книге Бекмана и Спицичино и в статье Хандери, полные ссылки на которые приведены в библиографии в конце главы. Таким образом, мы будем рассматривать модель мультислоя, а именно последовательность пластин с неограниченными поперечными размерами, разделенных идеальными плоскопараллельными поверхностями. Показатель преломления каждой из пластин постоянен (рис. 3.8). Будем нумеровать пластины последовательно справа налево, причем индексом 1 отметим среду, наиболее удаленную от источника падающей волны. Предположим, что ось I направлена поперек слоев, а  [c.172]

Простейшим примером резонатора, который удовлетворяет указанным требованиям, является инпкрферометр Фабри — Перо [10] с парой плоскопараллельных зеркал (рис. 7,7). Этот резонатор можно представить себе как обычный резонатор, имеющий форму замкнутой цилиндрической поверхности, у которой устранены боковые стенки, так что модам с высокой добротностью, соответствуют лишь две ква-зиплоские волны, бегущие в противоположных направлениях перпендикулярно плоскости зеркал. Условия распространения этих волн более благоприятны, чем любых других волн, распространяющихся под косыми углами к оптической оси интерферометра Фабри — Перо. То, что некоторая часть мощности теряется вне резонатора за счет плоской коллимированности лучей в пучке, приводит к снижению относительной добротности Q.  [c.486]

Впервые оптическая параметрическая генерация была полу- чена Джордмейном и Миллером [65], которые использовали в качестве источника накачки вторую гармонику лазера на Са 04 Н(1 с модуляцией добротности Яр = 0,529 мкм (фиг.7.1). Отражающие покрытия, которые образовывали резонатор для сигнальной и холостой волн, были напылены непосредственно на плоскопараллельные грани кристалла ниобата лития. Пропускание (1—Я) этих покрытий имело величину, меньшую 0,4%. Однако эффективные потери, определенные путем измерения добротности резонатора Фабри — Перо, образованного кристаллом, были около 20%. Причина различия была приписана поглощению в кристалле и рассеянию.  [c.194]

Но есть и иной выход. Можно по примеру акустиков и радиотехников воспользоваться резонаторами. Поиски удобного резонатора для оптической области спектра заняли несколько лет. В 1958 г. А. М. Прохоров предлол<ил использовать два плоскопараллельных зеркала. Эта идея была быстро подхвачена другими учеными, и уже через два года были созданы квантовые генераторы в оптической, а затем и в инфракрасной областях спектра.  [c.18]


Смотреть страницы где упоминается термин Оптические резонаторы плоскопараллельные : [c.184]    [c.67]    [c.38]    [c.8]    [c.189]   
Принципы лазеров (1990) -- [ c.187 ]



ПОИСК



Оптический резонатор

Плоскопараллельный резонатор

Резонаторы



© 2025 Mash-xxl.info Реклама на сайте