Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Инверсия населенностей и усиление света

Инверсия населенностей и усиление света  [c.165]

Кванты света поглощаются, а частицы переходят из состояния с энергией Ео в состояние с энергией Е2. Такое заселение уровня 2 получило название оптической накачки. Инверсия населенности здесь может быть получена либо между уровнями 2 и El (т. е. П2>П]), либо между уровнями 1 и о( 1> о)- В первом случае усиление возникает на переходе Ет Еи во вто- Рис. 9.9. Трехуровневая ром — на переходе Ei- Eo. Ясно, что для схема переходов создания инверсной населенности между  [c.317]


Принцип работы лазера в режиме модуляции добротности состоит в следующем. Допустим, что внутрь оптического резонатора помещен затвор. Если затвор закрыт, то генерация не возникает и, следовательно, инверсия населенности может достигнуть очень высокого значения. При достаточной мощности накачки на метастабиль-ном уровне можно накопить почти все частицы активного вещества. Однако условие генерации выполняться не будет, так как потери резонатора слишком велики. Если быстро открыть затвор, то усиление в лазере будет существенно превышать потери и накопленная энергия выделится в виде короткого интенсивного импульса света. Поскольку в данном случае добротность резонатора изменяется от низких до высоких значений, то такой режим называется режимом модуляции добротности резонатора. При быстром открывании затвора (за время, которое короче времени развития лазерного импульса) выходное излучение состоит из одного гигантского импульса. При медленном же открывании затвора может генерироваться много импульсов.  [c.283]

Состояние среды, когда Ns>N2y называется инверсией населенности энергетических уровней. В таком состоянии среда уже способна к генерации света. Для этого ее помещают в резонатор, который в простейшем случае образован двумя параллельными зеркалами, одно из которых полностью отражает свет, а другое частично отражает и пропускает его наружу (рис. В. 3). В этом случае усиление света в кристалле будет превосходить поглощение.  [c.7]

О тех случаях, когда в среде выполнено условие М2>М, известное как инверсия населенностей, в (9.37) а<0 (отрицательный коэффициент поглощения) и интенсивность волны в соответствии с (9.38) нарастает по мере ее распространения. Усиление падающего пучка света осуществляется за счет того, что при N2>N переходы с вынужденным испусканием фотонов происходят чаще, чем переходы с поглощением. Так как возникающие при вынужденном испускании фотоны тождественны с фотонами, вызвавшими испускание, когерентные свойства исходного пучка полностью сохраняются. Таков принцип действия квантового усилителя излучения. Различные способы создания необходимой для его работы среды с инверсией населенностей (активной среды) рассмотрены в 9.4. Важно отметить, что для создания активной среды всегда требуется подведение извне дополнительной энергии, которая затем при вынужденном испускании частично преобразуется в энергию усиливаемого электромагнитного излучения.  [c.443]


Отсюда видно, что для создания лазера в равной мере необходимы как усиливающая свет активная среда (усиление обеспечивается вынужденным излучением в условиях инверсии населенностей рабочих квантовых состояний), так и оптический резонатор — устройство, реализующее принцип оптической обратной связи и обеспечивающее многократное прохождение усиливаемого излучения по активной среде.  [c.9]

В активной среде с инверсией населенностей эффект насыщения приводит к уменьшению коэффициента усиления при увеличении интенсивности света и тем самым к установлению стационарного режима генерации в лазерах.  [c.279]

СПОСОБНОСТЬ [вращательная — отношение угла поворота плоскости поляризации света к расстоянию, пройденному светом в оптически активной среде излучательная — отношение светового потока, испускаемого светящейся поверхностью, к площади этой поверхности и к интервалу частот, в котором содержится излучение отражательная — отношение отраженной телом энергии к полной энергии падающих на него электромагнитных волн в единичном интервале частот поглощательная— отношение поглощенного телом потока энергии электромагнитного излучения в некотором интервале частот к потоку энергии падающего на него электромагнит-, ного излучения в том же интервале частот разрешающая прибора — характеристика способности прибора (оптического давать раздельные изображения двух близких друг к другу точек объекта спектрального давать раздельные изображения двух близких друг к другу по длинам волн спектральных линий) тормозная — отношение энергии, теряемой ионизирующей частицей на некотором участке пути в веществе, к длине этого участка пути] СРЕДА [есть общее наименование физических объектов, в которых движутся тела или частицы и распространяются волны активная — вещество, в котором осуществлена инверсия населенностей уровней энергии и в результате чего может быть достигнуто усиление электромагнитных волн при их прохождении через вещество анизотропная — вещество, физические свойства которого неодинаковы по различным направлениям гнротронная — среда, в которой существует естественная или искусственная оптическая активность диспергирующая — вещество, фазовая скорость распространения волн в котором зависит от их частоты изотропная — вещество, физические свойства которого одинаковы по всем выбранным в нем направлениям конденсированная—твердая или жидкая среда]  [c.279]

П. Цилиндрический стержень из Nd YAG диаметром 6,3 мм и длиной 7,5 см накачивается мощной импульсной лампой. Значение сечения лазерного перехода в максимуме линии с длиной волны 1,06 мкм равно сг = = 3,5 10 см , а показатель преломления равен п= 1,82. Найдите критическую инверсию населенностей, соответствующую началу процесса усиления спонтанного излучения (УСИ) (предполагается, что на оба торца лазерного стержня нанесены идеальные просветляющие покрытия, т. е. они не отражают свет). Кроме того, вычислите максимальное количество энергии, которая может быть запасена в этом стержне, если необходимо избежать воз-инкновення процесса УСИ,  [c.104]

Началом генерации является спонтанное излучение ионов с ме-тастабильного уровня, которое усиливается, проходя активную среду, и затем с помощью зеркал вновь в нее возвращается, снова усиливается и т. д. Если усиление света превосходит его суммарное ослабление за счет поглощения в среде и потерь на частичное пропускание выходного зеркала, то возникает генерация и лазер начинает излучать наружу свет. Очевидно, что мощность излучаемого света тем выше, чем выше мощность света накачки и чем меньше потери света внутри резонатора. Существует так называемая пороговая мощность накачки, при которой усиление света сравнивается с суммарными потерями, и при малейшем увеличении этой мощности может возникнуть генерация. Необходимо напомнить, что для того, чтобы усиление света всегда превосходило потери, нижний рабочий уровень 2 должен быстро опустошаться, т. е. его время жизни должно быть гораздо меньше, чем время жизни ме-тастабильного уровня. В противном случае начнется накопление ионов неодима на уровне 2 и возрастет поглощение света с этого уровня наверх. Кроме того, время жизни ионов на уровнях накачки также должно быть малым. В противном случае ионы начнут накапливаться на уровнях накачки и инверсия населенности среды (а значит, и коэффициент усиления света) —начнет падать.  [c.7]


Пороговая мощность накачки непрерывного лазера. Пороговая мощность накачки, как уже отмечалось, обеспечивает равенство усиления и потерь света в лазере при круговом обходе резонатора (такое состояние называется порогом генерации лазера). Из этого условия легко найти выражение для пороговой мощности накачки. Для этого можно воспользоваться уравнением генерации одномодового лазера (2.1а), из которого определяется пороговая концентрация инверсной населенности активной среды Л пор и затем пороговая мощность накачки. Действительно, первый член уравнения в левой части (—wjx ) описывает затухание поля за счет потерь в резонаторе, а второй член D ni)Vg,wNусиление поля в активной среде с инверсией населенности ионов неодима, равной N. При некоторой пороговой инверсии Л пор оба члена сравниваются по абсолютной величине, производная dwjdt обращается в нуль и дальнейшее, даже малое повышение инверсии, обусловливая положительную производную энергии поля во времени, приводит к генерации света в лазере, т. е. пороговое значение концентрации инверсии населенности находится из (2.1а) при равенстве нулю производной dwjdt.  [c.58]

Главные отличия импульсного ЛПМ (как и других ЛПМет на RM-переходах) от лазеров других типов — короткое время существования инверсии населенностей (т = 10-40 не), соизмеримое со временем пробега излучения в резонаторе (длиной 0,5-2,0 м), и большие усиления активной среды (десятки и сотни децибел). ЛПМ может работать в режиме сверхсветимости — без зеркал или с одним зеркалом, но расходимость при этом из-за низкой когерентности большая. В ЛПМ с оптическим резонатором за время существования инверсии (т) излучение успевает пройти в резонаторе лишь несколько раз (N — т/ Ь/с), где с — скорость света, L — длина резонатора) и моды в обычном их понимании, образующиеся в результате дифракции на зеркалах, формироваться не успевают. Для формирования в импульсных лазерах пучков излучения с малой расходимостью в работах [67-71] был применен неустойчивый резонатор (HP) телескопического типа.  [c.107]

Лазер (оптический квантовый генератор) - устройство, преобразующее различные виды энергии (электрическую, световую, химическую, тепловую и Т.Д.) в энергию когерентного электромагнитного излучения оптического диапазона. Действие лазера основано на использовании индуцированного излучения света системой возбужденных атомов, ионов, молекул или других частиц вещества активной средой), помещенной в оптический резонатор. Такое усиление возможно, если активная среда находится в состоянии так называемой инверсии населенностей, когда равновесное распределение частиц (электронов, атомов, ионов, молекул и др.) активной среды по уровням энергии нарущается и число частиц на возбужденном энергетическом уровне превьшает число частиц на ниже расположенном уровне. Для создания и поддержания в активной среде инверсии населенностей применяются различные методы возбуждения (накачка), зависящие от структуры активной среды. Накачка может осуществляться под действием света оптическая накачка), пучка электронов, сильного электрического поля, в газовом разряде, в результате химических реакций, инжекции неравновесных носителей заряда инжекционная накачка), посредством пространственной сортировки молекул (в молекулярных генераторах) и другими методами.  [c.510]

Изящное решение проблемы возбуждения дается использованием распространяющейся волны, в которой возбуждение распространяется со скоростью света таким образом, что инверсия населенности создается с той же скоростью, с какой она разрушается за счет вынужденного излучения. Полученное усиление настолько сильно, что не возникает необходимости в резонаторе — лазер действует в ультрафиолетовой области. Молекулярный лазер на азоте, который, видимо, первый заработал на электронных перехода в молекулах, использует теперь этот принпип и дает несколько линий в близком ультрафиолете в окрестности 3371 А. Другое решение в области коротких волн — использование пучка высокоэнергетических электронов с энергией порядка l- 2 Мэе, которые осуществляют одновременно возбуждение и ионизацито газа (энергии, необходимые для обоих процессов, близки и составляют 10- 20 эв). На водороде с использованием обоих этих методов был установлен рекорд наименьшей наблюденной длины волны вынужденного излучения в полосе излучения Вернера (Я, = 1161 А) (рис. 9). Полученная пиковая мощность довольно  [c.41]

Создание инверсной населенности и получение оптического усиления — первый из двух существенных шагов, необходимых для работы лазера. Второй шаг — создание положительной обратной связи, чтобы превратить оптический усилитель в генератор. Это можно сделать с помощью двух зеркал, которые отражают усиленный свет в усиливающую среду. Так ие зеркала образуют оптический резонатор. Резонатор имеет характеристические резонансные частоты, что приводит к особенностям в спектре излучения, генерируемого двухуровневой системой. Устанавливается равновесная плотность оптической мощности на каждой резонансной частоте, соответствующая равенству усиления на проход и потерь. В понятие потерь включена и та часть оптической мощности, которая проходит сквозь полупрозрачное зеркало и образует выходной лазерный пучок. Самовозбуждение не может начаться, пока усиление не превысит потери. Это условие соответствует пороговой инверсии населенности п — 1)пор- Некоторая часть генерируемого света рассеивается в активной среде в процессе распространения. Этот процесс можно описать с помощью коэффициента рассеяния Орас. аналогичного коэффициенту поглощения 021- Тогда изменение оптической мощности пучка с расстоянием  [c.268]


Наконец, обсудим место лазеров на динамических решетках в квантовой электронике. Первые квантовые генераторы оптического диапазона, созданные уже более 25 лет назад, использовали для усиления явления вынужденного излучения света в среде с инвертированной населенностью (рубин [1], газовые смеси [2]). Активная среда в этих лазерах становилась усиливающей под действием стороннего источника накачки (оптического,, электрического, химического и т.д.), создающего в среде инверсию. Однако достаточно скоро появились также генераторы, использующие нелинейнооптические процессы усиления — вынужденные рассеяния [3] и параметрические многоволновые взаимодействия [4] ). Необходимым условием их реализации было использование для накачки оптического излучения с достаточной степенью монохроматичности.  [c.258]

Принцип работы лазера в режиме ГИ состоит в том, что благодаря соответствующему устройству (Q-y тpoй твy) можно изменять добротность резонатора в процессе дей-стия импульса накачки. Процесс генерации лазера с Q устройством следующий. В начале действия импульса накачки добротность резонатора низкая. Поэтому порог генерации, а следовательно, и пороговая ннверсность населенности большие. Это означает, что на метастабильном уровне, например у рубина на уровне , или у неодима на уровне / 3/3, накапливается частиц значительно больше при той же накачке, чем в случае добротного резонатора. Получив таким образом максимальную инверсию для низкой добротности резонатора, осуществим мгновенное включение Q-y тpoй твa, обеспечив высокую добротность резонатора. В результате возникает существенное превышение усиления в лазере над потерями и излучается короткий и мощный импульс света. Схематически картина образования ГИ показана на рис. 19.1. Естественно, ско-  [c.175]


Смотреть страницы где упоминается термин Инверсия населенностей и усиление света : [c.62]    [c.57]    [c.59]    [c.135]    [c.292]    [c.154]   
Смотреть главы в:

Лазерное дистанционное зондирование  -> Инверсия населенностей и усиление света



ПОИСК



Инверсия

Инверсия населенностей

Населенность

Света усиление

Усиление



© 2025 Mash-xxl.info Реклама на сайте