Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фоторезистор

Оптрон — оптоэлектронный прибор, в котором передача или накопление сигналов обусловлено как световыми, так и электронными процессами состоит из преобразователей световой энергии в электрическую (фоторезистора или фотодиода) и электрической энергии в световую (лампы накаливания, лампы газового разряда, светодиода) между преобразователями осуществляется электрическая, оптическая или комбинированная связь может использоваться как элемент усилительных, логических и других устройств [81.  [c.149]


Фоторезисторы. Опыты показывают, что электрическое сопротивление полупроводниковых кристаллов изменяется не только при их нагревании, но и при освещении. При увеличении освещения электрическое сопротив-  [c.157]

Фотосопротивления (фоторезисторы) основаны на внутреннем фотоэффекте. Еще в 70-х гг. XIX в. было замечено, что пластинка селена, освещенная светом, меняет свое сопротивление. В настоящее время для изготовления фотосопротивлений селен практически не используется они изготовляются главным образом из сернистого свинца, сернистого висмута, сернистого кадмия или сернистого таллия. Обычно фотосопротивление представляет собой стеклянную пластинку с нанесенным тонким слоем полупроводника, на поверхности которого укреплены токопроводящие электроды.  [c.173]

Полупроводниковые материалы используются для получения проводимости, управляемой внешними факторами, например, напряжение, температура, освещенность. Из них изготавливаются диоды, транзисторы, фоторезисторы и тому подобные элементы.  [c.5]

При световых частотах, т. е. при длинах волн, измеряемых микронами, энергия фотона достаточна для ионизации и образования пары электрон — дырка. Электроны и дырки образовавшиеся под влиянием света, называются неравновесными, так как они исчезают после прекращения облучения. За время своего существования неравновесные носители зарядов под действием приложенного поля с напряженностью Е успевают пройти расстояние 1ф, называемое длиной затягивания неравновесных носителей. Этот эффект используется в фоторезисторах. Длина затягивания выражается формулой  [c.274]

Основные области применения полупроводниковых материалов 1) выпрямительные и усилительные приборы разной МОЩНОСТИ на разные частоты неуправляемые и управляемые — диоды, транзисторы, тиристоры 2) нелинейные резисторы-варисторы 3) терморезисторы 4) фоторезисторы 5) фотоэлементы 6) термоэлектрические генера,-  [c.276]

Технология выращивания монокристаллов соединений разработана гораздо менее полно, чем технология полупроводников типа Л В . Широкозонные полупроводники А"В представляют собой в технологическом отношении трудные объекты, так как обладают высокими температурами плавления и высокими давлениями диссоциации в точке плавления. Выращивание таких материалов в большинстве случаев осуществляется перекристаллизацией предварительно синтезированного соединения через паровую фазу в запаянных кварцевых ампулах. Применяют соединения А В в большинстве случаев для создания промышленных люминофоров, фоторезисторов, высокочувствительных датчиков Холла и приемников далекого инфракрасного излучения.  [c.292]


Фоторезисторы, выполненные из фталоцианина меди, отличаются большой кратностью возрастания тока при освещении (до 10 ) и стабильностью свойств.  [c.213]

Релаксация фотопроводимости. Изменение электрических свойств полупроводников под влиянием электромагнитного излучения зависит от времени (релаксация). После прекращения облучения проводимость более или менее быстро возвращается к тому значению, которое она имела до облучения. У одних полупроводников это длится микросекунды, у других измеряется минутами и даже часами. Знание инерционности фотопроводимости различных полупроводниковых веществ важно при разработке, например, фоторезисторов, к быстродействию которых  [c.247]

ЮТ комбинированный мост 16. Барабан 7 с программой нагрева, вращаясь с заданной скоростью от синхронного двигателя 10, определяет перемещение каретки 8 с датчиком 17 (фоторезистор типа ФСК-1) и величину выходного сигнала с моста И, управляющего перемещением. ползунка реохорда 14 с помощью двигателя 13 (РД-09) и усилителя 12. При разбалансе моста 16 сигнал поступает на приставку 5, которая и управляет нагревом.  [c.24]

Существенно шире возможности методики записи диаграмм с применением следящей системы на фоторезисторах [37, 38, 48 . Эта методика позволяет осуществлять компенсацию при неодинаковых законах изменения поперечной термической деформа ции, соответствующим этапам нагрева и охлаждения по режиму пила элементов сплошных сечений, а также в испытаниях по термическому циклу с выдержкой на /max-  [c.33]

Таким образом фоторезистором 7 при повороте барабана 1 осуществляется запись только механической деформации образца, а термическая деформация автоматически компенсируется в мосте 11.  [c.36]

На рис. 12.7 показаны устройство фоторезистора и схема его-включения. Чувствительный элемент фоторезистора представляет собой брусок или пленку монокристаллического или поликристал-дического полупроводника с двумя омическими контактами. Он подключается к источнику смещения через нагрузочное сопротивление Толщина чувствительного элемента должна быть достаточно большой, чтобы в кем поглощался практически весь свет W o (1 — 0. прошедший через освещенную поверхность — мощность падающего света г — коэффициент отражения поверхности).. Это требование легко выполнить для собственных фоторезисторов-и часто трудно выполнить для примесных. Если оно выполнено, то< число носителей (или пар носителей при собственном поглощении),, генерируемых светом в единицу времени в чувствительном элементе при X < будет равно  [c.324]

Рис. 12.7. Схема устройства и включения в цепь фоторезистора Рис. 12.7. Схема устройства и включения в цепь фоторезистора
Под действием напряжения V, приложенного к фоторезистору, созданные светом носители заряда совершают дрейф и создают в цепи ток, который называют фототоком /ф. Его легко определить из следующих соображений. Каждый носитель заряда за время своей жизни проходит через резистор х//пр раз, где /цр — время пролета, или, точнее, время дрейфа носителя через резистор. Оно равно длине чувствительного элемента резистора /, деленной на скорость дрейфа ОдГ  [c.325]

Фотоэлектрические приборы широко используют в сочетании с оптическими элементами, растрами, дифракционными решетками и интерферометрами (см. гл. 5). В качестве источника света может служить само раскаленное изделие, лампы накаливания, телевизионные трубки или лазеры. В качестве светоприемников применяют фоторезисторы, фотодиоды, фототранзисторы, фототиристоры, фотоэлектронные умножители, телевизионные трубки. Преимуш,е-ства фотоэлектрических приборов —высокая точность, ишрокие пределы измерений, дискретная (цифровая) форма выходного сигнала, возможность осуществления бесконтактного метода контроля н др. Однако эти приборы, как правило, сложны, дороги и требуют тш,ательной защиты от воздействия окружающей среды (пыли, конденсата и т. п.).  [c.159]


Фототранэистор — фотоэлектрический полупроводниковый прибор с двумя р—п переходами, у которого обычно база не имеет электрического вывода, а носители зарядов возбуждаются лучистой энергией, падающей на базу, которая на большей своей площади имеет прозрачное покрытие для излучения в рабочем диапазоне частот используется в качестве фоторезистора, но имеет большую чувствительность включается по схеме, аналогичной схеме с обш,им эмиттером [3, 4 ].  [c.163]

Спектрометрия в инфракрасной области спектра не может производиться с помощью вакуумных фотоэлементов и ФЭУ по той причине, что совре у1енные фотокатоды имеют красную границу не выше 1100 нм. Однако уже сейчас известны материалы, позволяющие продвинуться до 3—4 мкм. Поэтому в инфракрасной области применяются фотоэлементы, работающие на основе внутреннего фотоэффекта. Сюда следует отнести неохлаждаемые фоторезисторы на основе 1п5Ь, РЬЗе и РЬЗ, которые могут быть использованы до 6 мкм, и глубоко охлаждаемые фоторезисторы на основе германия, легированного золотом, цинком, медью и другими металлами, пригодные до 40 мкм.  [c.652]

Этим видам фотоэффекта соответствуют три основные группы фотоэлементов — приборов, превращающих световую энергию в энергию электрического тока фотоэлементы с внешним фотоэффектом (вакуумные и газонаполненные) фотоэлементы с внутренним фотоэффектом (фотосопротивления или фоторезисторы) фотоэлементы с запирающим слоем (вентильные или нолуиронодниковые).  [c.156]

Гидирующая система, разработанная КИСИ, непрерывно следит за положением лазерного пучка и приводит в движение пишущее перо для регистрации результатов измерений на бумажной лei тe (рис.65), система содержит два фоторезистора, на которые падает луч лазера. Сопротивление фоторезистора уменьшаегся пропорционально засветке и в зависимости от положения пучка изменяется ток первого или второго фоторезистора. Злектрический сигнал на сопротивлении в общей цепи будет при этом изменять свою величину и фазу, принимая нулевое значение при равенегве токов и среднем положении пучка. Усиленный сигнал приводит в действие мотор, пе()емещающий фоторезисторы и пишущее перо в соответствии с перемещением луча лазера. Погрешность измерения такой системы составляет около 2 мм на пути до 200 м.  [c.138]

Для регистрации результатов исследований, полученных при помощи прямотеневых, шлирных, интерференционных и голографических. методов, могут быть использованы различные расположенные в плоскости экрана светорегистрирующие среды, такие как фотографические и электрографические материалы, фоторезисторы, полупроводниковые светочувствительные экраны. Однако-широкое применение в настоящее время нашли галоидосеребряные фотографические материалы из-за их сравнительной дешевизны, высокой чувствительности и разрешающей способности. Разрешающая способность некоторых из них достигает 2800 линий на 1 мм и более.  [c.221]

Такой подсистемой может быть юдвижный и неподвижный растры, оправа приемника лучистой энергии мозаика фоторезисторов и т. п. В вырожденном случае - это неподвижная диафрагма и стоящий непосредственно за ней приемник лучист13й энергии. Методически удобно отнести к подсистеме анализатор изобр 1жения — развертывающее устройство, характеризуемое некоторым коэффициентом пропускания г и законом перемещения в поле анализа изображения, а также устройство, осуществляющее преобразование многомерного сигнала в одномерный без искажений во временной координата. Таким устройством может быть, например, безынерционный фотоприемник. В этом случае можно считать, что на вход анализатора изображения поступает сигнал в виде распределения освещенности, создаваемого либо оптической системой, либо слоем пространства.  [c.60]

Характер спектральной характеристики ПЛЭ в общем случае определяется тем, относится ли ПЛЭ к тепювым (термоэлементы, болометры, пневматические, оптико-акустические, пироэлектрические ПЛЭ) или к фотоэлектрическим (фоторезисторы, фотодиоды, фототриоды, фотоэлементы, ЭОП, ФЭУ, телевизионные тр ки). Тепловые ПЛЭ неселективны спектральная чувствительность идеального теплового ПЛЭ постоянна во всем оптическом диапазоне (X) = onst. Однако у реальных ПЛЭ спектральный диапазон чувствительности ограничен, например, спектральной полосой пропускания оптических фильтров, используемых как элемент конструкции ПЛЭ. Поэтому спектральную характеристику даже идеализированного теплового приемника сл дует записывать  [c.66]

Контактол К-12 наряду с высокой прводимостью обладает также высокой прочностью склеивания. Клей широко используется для монтажа элементов радиоэлектронной аппаратуры, таких, как ниточные резисторы, фоторезисторы и др.  [c.44]

Германий является одним из первых полупроводниковых материалов, получивших широкое практическое применение в серийном производстве различных полупроводниковых элементов. Его используют для изготовления выпрямительных и импульсных диодов, самых различных видов тиристоров, фотодиодов, фоторезисторов, фототранзисторов, детекторов инфракрасного излучения, тиристоров, счетчиков ядерных частиц, тензометров и т. д. Диапазон рабочих те,мпсратур этих приборов от - 60 до +80" С.  [c.77]

Для фоторезисторов (фотосопротивлений) и фотоэле- ментов применяются полупроводниковые материалы, сопротивление которых сильно зависит от освещенности. К их числу относятся сульфиды, селениды и теллуриды, т. е. соединения серы, селена и теллура с разными металлами, в частности со свинцом, медью, кадмием и др. Определяющей характеристикой фотосопротивлёния является удельная чувствительность  [c.286]

Из табл. 8.4 видно, что эти соединения являются узкозонными полупроводниками. Халькогениды свинца используют для изготовления фоторезисторов в инфракрасной технике, инфракрасных лазеров, тензометров и термогенераторов, работающих в интервале температур от комнатной до 600 С.  [c.293]


Управляемость электропроводностью полупроводников посредством температуры, света, электрического поля, механических усилий положена в основу принципа действия соогвепственно лермо-резисторов (термисторов), фоторезисторов, нелинейных резисторов (варисторов), тензорезисторов и т. д.  [c.229]

Германий применяется для изготовления выпрямителей переменного тока различной мощности, транзисторов разных типов. Из него изготовляются преобразователи Холла и другие, применяемые для измерения напряженности магнитного поля, токов и мощи сти, умножения двух величин в приборах вычислительной техники и т. д. Оптические свойства германия позволяют использовать его для фототранзисторов и фоторезисторов, оптических линз б большоГ светосилой (для инфракрасных лучей), оптических фильтров, модуляторов света и коротких радиоволн. Внутренний фотоэффект в германии наблюдается и при поглощении средних и быстрых электронов, а также при торможении элементарных частиц больших масс. Так, при поглощении а-частицы отмечается импульс тока продолжительностью около 0,5 МКС, соответствующий прохождению 10 электронов. Поэтому германий может быть использован и для изготовления счетчиков ядерных частиц. На рис. 8-18 приведена вольт-амперная характеристика мощного германиевого выпрямителя б воздушным охлаждением. Рабочий диапазон температур германиевых приборов от —60 до -f70 °С при повышении температуры до верхнего предела прямой ток, например у диодов, увеличивается почти в два раза, а обратный — в три раза. При охлаждении до —(50—60) °С прямой ток падает на 70—75 %.  [c.255]

Сульфиды — сернистый свинец (PbS), сернистый висмут (BijSg) н сернистый кадмий ( dS) — используют для изгото ления фоторезисторов (фотосопротивлений).  [c.264]

При собственном и примесном поглощениях возникают избыточные свободные носители заряда, приводящие к увеличению проводимости полупроводника. Процесс внутреннего освобождения электронов под действием света называется внутренним фотоэффектом. Добавочная проводимость, приобретаемая полупроводником при облучении светом, называется фотопроводимостью. Основная, же проводимость, обусловленная тепловым возбуждением свободных носителей заряда, называется темновой проводимостью. Приборы, предназначенные для регистрации светового излучения по< величине фотопроводимости, называются фоторезисторами.  [c.324]


Смотреть страницы где упоминается термин Фоторезистор : [c.163]    [c.766]    [c.157]    [c.173]    [c.156]    [c.356]    [c.286]    [c.180]    [c.190]    [c.190]    [c.192]    [c.195]    [c.197]    [c.198]    [c.360]    [c.361]    [c.264]    [c.34]    [c.35]   
Смотреть главы в:

Карманный справочник инженера-метролога  -> Фоторезистор


Справочник металлиста. Т.1 (1976) -- [ c.163 ]

Справочник металлиста Том5 Изд3 (1978) -- [ c.163 ]

Химия и радиоматериалы (1970) -- [ c.243 ]

Электротехнические материалы Издание 5 (1969) -- [ c.363 , c.364 ]

Основные термины в области температурных измерений (1992) -- [ c.0 ]

Фотоаппараты (1984) -- [ c.75 ]

Карманный справочник инженера-метролога (2002) -- [ c.68 ]

Справочник металлиста Том 1 Изд.3 (1976) -- [ c.163 ]



ПОИСК



Материалы для фоторезисторов и фотоэлементов

Фоторезистор сверхскоростной

Фоторезистор — Спектральная крива

Фоторезисторы а основе сульфида свинца

Фоторезисторы на основе германия легированного золотом и ргстою

Фоторезисторы на основе селепида кадмия

Фоторезисторы на основе соединении кадмии — ртуть— теллур

Фоторезисторы основе сульфида кадмия

Фотоэлементы с внешним фотоэффектом. Фоторезисторы



© 2025 Mash-xxl.info Реклама на сайте