Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фотодиод

Оптрон — оптоэлектронный прибор, в котором передача или накопление сигналов обусловлено как световыми, так и электронными процессами состоит из преобразователей световой энергии в электрическую (фоторезистора или фотодиода) и электрической энергии в световую (лампы накаливания, лампы газового разряда, светодиода) между преобразователями осуществляется электрическая, оптическая или комбинированная связь может использоваться как элемент усилительных, логических и других устройств [81.  [c.149]


Фотодиод селеновый — фотодиод полупроводниковый поликристал-лический, изготовленный из кристаллического селена, нанесенного на алюминиевую пластину, и предназначенный для работы в генераторном режиме [4 ].  [c.163]

Фотоэлемент, вентильный — полупроводниковый прибор, генерирующий э. д. с. под действием падающего на него света фотодиод, работающий в вентильном режиме, селеновый фотоэлемент и др. [9].  [c.163]

Существенные трудности возникают при использовании фотоумножителей в инфракрасной области спектра. Как уже указывалось, наличие красной границы фотоэффекта делает в этом случае невозможным применение фотокатодов, прекрасно работающих в видимой и ультрафиолетовой областях. Для измерений в инфракрасной области используют фотодиоды, механизм действия которых основан на внутреннем фотоэффекте.  [c.442]

Фотодиод представляет собой полупроводниковую пластинку, внутри которой имеются области электронной (п-область) и дырочной (р-область) проводимости, разделенные электронно-ды-рочным переходом. Иа рис. 8.22 изображены две возможные принципиальные схемы фотодиода.  [c.442]

Фотодиод может работать в двух различных режимах с внешним источником напряжения и без него. Для измерительных целей обычно включается внешняя разность потенциа.яов. Для генерации электрической энергии (например, в солнечных батареях) используют полупроводниковые устройства без внешней Э.Д.С., работающие в так называемом вентильном режиме.  [c.443]

Для генерации и наблюдения инфракрасного излучения того же лазера необходимо иметь прозрачные для него торцовые окна газоразрядной трубки, зеркала резонатора с высокими значениями коэффициента отражения в инфракрасной области спектра и, разумеется, приемник, чувствительный к инфракрасному излучению, например, болометр или фотодиод.  [c.793]

Дело в том, что технические средства не в состоянии прямым путем измерить фазу столь высокочастотных колебаний, какими являются световые сигналы, поскольку реакция любого приемника света (фотоумножителя, фотодиода, фототранзистора и даже человеческого глаза) определяется значением средней интенсивности света. Однако решение этой задачи оказалось неожиданно очень простым. Д. Габор предложил использовать для получения голограммы интерференцию двух когерентных пучков света, называемых обычно объектным и опорным, а для восстановления изображения с голограммы — явление дифракции света.  [c.10]

Фотодиоды также основаны на внутреннем фотоэффекте. Германиевые фотодиоды близки по принципу действия к фотосопротивлениям. Простейший германиевый фотодиод с точечным контактом показан на рис. 26.20. К тонкой пластинке из германия, имеющей с внутренней (по отнощению к падающему излучению) стороны углубление, подведены два контакта. Один из них припаян с боковой стороны пластинки, а другой соединен при помощи пружинного контакта с вольфрамовой спиралью-коллектором. Свет концентрируется на германиевую пластинку в месте, лежащем против точечного контакта. Если германиевая пластинка имеет электронный харак-  [c.173]


Рис. 26.20. Схема точечного германиевого фотодиода Рис. 26.20. Схема точечного германиевого фотодиода
Рис. 26.21. Схема плоскостного германиевого фотодиода Рис. 26.21. Схема плоскостного германиевого фотодиода
Затем нужно измерить локальные значения плотности, светового потока в плоскости, касательной к трубам и находящейся за ними, перемещая фотодиод по шкале координатного устройства с шагом 4—5 мм.  [c.194]

Кремний применяют для изготовления различных диодов и транзисторов, тиристоров, стабилитронов, фотодиодов, датчиков Холла, тензометров и других полупроводниковых приборов, а также интегральных схем.  [c.80]

На рис. 5, в показано изменение сигналов ф (а) фотодиода в зависимости от расстоянии а от датчика до объекта.  [c.60]

Для фотоэлектрической пирометрии в области от 700 °С и выше предпочтительным детектором является фотоумножитель с фотокатодом типа 5-20. Его конкурентом служит кремниевый фотодиод, который хотя и обладает некоторыми преимущест-  [c.376]

Существуют два основных источника шума, появляющегося в выходном сигнале детектора шум самого детектора и флуктуации, присутствующие в тепловом излучении, которое попадает в детектор [58]. Ни один из них не ограничивает чувствительность фотоэлектрических пирометров в области выше 700 °С. Оба детектора (фотоумножитель и кремниевый фотодиод) могут быть использованы с временем усреднения, достаточно большим, чтобы снизить случайную погрешность из-за шума детектора и флуктуаций излучения до уровня в несколько миликельвинов в температурном эквиваленте.  [c.377]

Фотоэлектрические приборы широко используют в сочетании с оптическими элементами, растрами, дифракционными решетками и интерферометрами (см. гл. 5). В качестве источника света может служить само раскаленное изделие, лампы накаливания, телевизионные трубки или лазеры. В качестве светоприемников применяют фоторезисторы, фотодиоды, фототранзисторы, фототиристоры, фотоэлектронные умножители, телевизионные трубки. Преимуш,е-ства фотоэлектрических приборов —высокая точность, ишрокие пределы измерений, дискретная (цифровая) форма выходного сигнала, возможность осуществления бесконтактного метода контроля н др. Однако эти приборы, как правило, сложны, дороги и требуют тш,ательной защиты от воздействия окружающей среды (пыли, конденсата и т. п.).  [c.159]

Иные требования предъявляются к покрытиям, наносимым на рабочие поверхности солнечных фотобатарей. Энергия, нагревающая солнечный элемент, представляет разность между падающей солнечной энергией и энергией, генерируемой фотоэлементом в электрическую цепь. Фотодиоды преобразуют в электрическую энергию всего 10—15% поглощенной солнечной энергии излучения [190]. Область их спектральной чувствительности 0,4—1,1 мкм солнечная радиация с длинами волн 0,2— 0,4 и 1,1—3,0 мкм, составляющая соответственно 9 и 23% суммарной энергии солнечного излучения, не реализуется в фотоэлементе.  [c.219]

Точность измерения скорости света определяется в этом случае, во-первых, тем, насколько стабилен данный источник, и, во-вторых, тем, с какой точностью удается измерить частоту и длину волны излучения. Источниками электромагнитного излучения, наиболее удовлетворяющими этим требованиям, являются лазеры. Измерение длины В0Л1ГЫ , основанное на явлении интерференции света, производится с ошибкой, не превышающей величину порядка 10 , Измерение частоты излучения основано на технике нелинейного преобразования частоты. Используемый прибор (например, полупроводниковый диод), приняв синусоидальное колебание некоторой частоты, дает на выходе колебания более высокой частоты — удвоенной, утроенной и т. д. Этот метод с помощью нелинейного элемента излучс1П1Я кратной частоты позволяет измерять частоту излучения лазера и сравнивать его с частотами, измеренным прежде. Согласно результатам изме-рени , в1> пол 1ен ЫМ этим методом в 1972 г., скорость света в вакууме равна (299792456,2 1,1) м/с. Новые методы разработки нелинейных фотодиодов, испо.и.зусмых для смещения частот светового диапазона спектра, позволят в будущем увеличить точность лазерных измерений скорости света.  [c.418]


Фотодиод — фотоэлектрический полупроводниковый прибор с одним р—п переходом, носители тока в котором возбуждаются излучением различают два режима работы — генераторный (вентильный), при котором энергия излучения преобразуется в электрическую, например, как в солнечном фотоэлементе, и фогопреобразовательный (диодный), при котором под действием излучения меняется сопротивление фотодиода [3, 4 ].  [c.163]

Фотодиод германиевый [кремниевый ] — фотодиод монокристалли-ческой структуры, выполненный из примесных полупроводниковых материалов на основе германия (кремния) [4].  [c.163]

Фотоэлемент полупроводниковый — полупроводниковый прибор, генерирующий электрическую энергию или изменяющий один из своих электрических параметров (обычно сопротивление, реже — емкость) под действием падающего на него излучения к этому виду фотоэлементов относятся торезисторы, фотодиоды, фототранзисторы, фототиристоры и др. [4].  [c.164]

Величина фото-э.д.с. существенно зависит от свойств используемого полупроводника и технологии изготовления. Для уменьшения флуктуаций темпового тока полезно охлаждение устройства. Широкое распространение получили германиевые и кремниевые фотодиоды. На рис. 8.28 приведены спектральные характеристики таких приемников света. Как видно, максимальная чувствительность германиевого фотодиода наблюдается в такой области длин волн (). iiK мкм), где использование фотоумножителей практически уже невозможно.  [c.443]

Другой тип германиевых фотодиодов показан на рнс. 26.21. Он состоит, как и обычный полупроводниковый диод, из полупроводников (например, того же германия) двух типов проводимости. Образуюпгийся на границе р— -переход при подаче положительного потенциала со стороны германия /г-типа препятствует свободному прохождению тока. При освещении узкой области р— -перехода в германии /г-типа образуются пары и дырки диффундируют через р—/г-переход, вызывая возрастание тока.  [c.174]

На В1алу установки закреплен диск с отверстиями, пропускающими свет на фотодиод, который служит датчиком скорости вращения. Частота вращения, пропорциональная скорости, измеряется цифровым частотомером для визуального отсчета, а затем преобразованная в аналоговую форму частотомером ЧЗ-3-7 поступает на регистрацию в систему.  [c.349]

Характер спектральной характеристики ПЛЭ в общем случае определяется тем, относится ли ПЛЭ к тепювым (термоэлементы, болометры, пневматические, оптико-акустические, пироэлектрические ПЛЭ) или к фотоэлектрическим (фоторезисторы, фотодиоды, фототриоды, фотоэлементы, ЭОП, ФЭУ, телевизионные тр ки). Тепловые ПЛЭ неселективны спектральная чувствительность идеального теплового ПЛЭ постоянна во всем оптическом диапазоне (X) = onst. Однако у реальных ПЛЭ спектральный диапазон чувствительности ограничен, например, спектральной полосой пропускания оптических фильтров, используемых как элемент конструкции ПЛЭ. Поэтому спектральную характеристику даже идеализированного теплового приемника сл дует записывать  [c.66]

Светочувст ите л ь н а я часть фотодиода имеет небольшие размеры, поэтому можно приближенно полагать, что фотодиод измеряет локальную плотность светового потока., Фотодиод закреплен на конце стержня квадратного сечения. Стержень имеет возможность перемещаться по направлению к излучающей поверхности и от нее, а также в плоскости, находящейся за трубами. Координатное устройство служит для определения положения фотодиода.  [c.194]

Германий является одним из первых полупроводниковых материалов, получивших широкое практическое применение в серийном производстве различных полупроводниковых элементов. Его используют для изготовления выпрямительных и импульсных диодов, самых различных видов тиристоров, фотодиодов, фоторезисторов, фототранзисторов, детекторов инфракрасного излучения, тиристоров, счетчиков ядерных частиц, тензометров и т. д. Диапазон рабочих те,мпсратур этих приборов от - 60 до +80" С.  [c.77]

В авиационной технике полупроводниковые материалы используют в приборах для генерации и усиления электрических сигналов и выпрямления переменного тока (диоды) и в качестве фотосопротивления и фотодиодов. Термоэлектрические свойства полупроводников позволяют применять их в качестве термосопротивлений, термоэлементов, термостабилизаторов и при создании солнечных батарей. Магнитные свойства полупроводниковых материалов (окислы металлов переходных групп, соединения металлов с серой, теллуром и селеном) позволяют применять их при изготовлении малогабаритных антенн, транс-  [c.279]

Привод от пневмоцилиндра позволяет губкам захвата манипулировать при высоких температурах. В тех случаях, когда требуется информация об усилии сжимания объекта, температуре среды, скорости движения и т. п., на схватах устанавливают сенсорные датчики, заменяющие органы чувств (sensorium—лат.). Напри-й) мер, схват руки Эрнста (рис. 18.4, имеет датчик У, определяющий положение объекта между пальцами, датчики 2, сигнализирующие о касании с нерабочими участками пальцев, датчики 3, информирующие о контакте с объектом, фотодиод 4, реагирующий на затемнение от встречных объектов. Схемы схватов ПР  [c.505]

Германий применяется для и,чгоговления диодов различных типов, транзисторов, датчиков ЭДС Холла, тензодатчиков, Оптиче-ческие свойства германия позволяют его использовать для изготовления фотодиодов и фототранзисторов, модуляторов света, оптических фильтров, а также счетчиков ядерных частиц. Рабочий диапазон температур германиевых приборов от - 60 до 4-70 °С,  [c.285]

Из кремния изготавляются различные типы полупроводниковых диодов низкочастотные (высокочастотные), маломощные (мощные), полевые транзисторы стабилитроны тиристоры. Широкое применение в технике нашли кремниевые фотопреобразователь-ные приборы фотодиоды, фототранзисторы, фотоэлементы солнечных батарей. Подобно германию, кремний используется для изготовления датчиков Холла, тензодатчиков, детекторов ядерных излучений.  [c.288]



Смотреть страницы где упоминается термин Фотодиод : [c.123]    [c.124]    [c.326]    [c.190]    [c.137]    [c.766]    [c.766]    [c.437]    [c.442]    [c.442]    [c.173]    [c.156]    [c.63]    [c.193]    [c.194]    [c.194]    [c.195]    [c.198]    [c.60]   
Смотреть главы в:

Карманный справочник инженера-метролога  -> Фотодиод


Справочник металлиста. Т.1 (1976) -- [ c.163 ]

Справочник металлиста Том5 Изд3 (1978) -- [ c.163 ]

Вакуумная спектроскопия и ее применение (1976) -- [ c.203 , c.204 ]

Оптика (1986) -- [ c.466 , c.467 ]

Фотоаппараты (1984) -- [ c.75 ]

Карманный справочник инженера-метролога (2002) -- [ c.85 ]

Справочник металлиста Том 1 Изд.3 (1976) -- [ c.163 ]



ПОИСК



D-оператор для систем фотодиод

Идеальный фотодиод

Импульсные и частотные характеристики p-i-я-фотодиодов

Кремниевые фотодиоды и фототранзисторы

Основные принципы работы фотодиода рп фотодиоды

Полупроводниковые p-i-я-фотодиодиые детекторы

Практические схемы конденсаторной бесконтактной системы зажигания с триодными тиристорами и фотодиодом

Практические схемы конденсаторной бесконтактной системы зажигания с фотодиодом

Точное решение для тока фотодиода

Устройство лавинных фотодиодов

Формула интерполяционная Фотодиод

Фотодиод германиевый

Фотодиод германиевый селеновый

Фотодиод кремниевый

Фотодиод лавинный

Фотодиоды для длинноволнового диапазона

Фотодиоды и фототриоды

Фоторезнсторы и фотодиоды ьа основе антимонида ичдпя

Характеристика фотодиода

Ширина полосы пропускания лавинных фотодиодов



© 2025 Mash-xxl.info Реклама на сайте