Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Связующие для изделий, получаемых методом

Связующие для изделий, получаемых методом намотки. Намотку изделий осуществляют армирующими волокнистыми материалами , пропитанными связующим. Нанесение связующего на волокна осуществляют, окуная их в раствор (или расплав) связующего. При высокой вязкости связующего трудно обеспечить равномерную пропитку армирующих материалов и регулировать относительное содержание полимерной матрицы в материале. С точки зрения обеспечения стабильности и непрерывности технологического процесса важным фактором является жизнеспособность связующего в пропиточной ванне, которая должна составлять не менее 6 - 8 ч. Однако в связи с разработанными в последнее время методами высокоскоростной намотки волокон, эффективного перемешивания связующих в ванне их жизнеспособность уже не является столь критическим параметром и может ограничиваться 2 - 3 ч.  [c.55]


Для определения систем подналадки металлорежущих станков необходимо знать характер смещения настройки в управляемом технологическом процессе, а также параметры процесса. Исходные данные получают, анализируя пооперационную точность обработанных изделий за некоторый промежуток времени. В этом случае целесообразно разделение суммарной погрешности на составляющие, для которых определены методы их уменьшения. Для случайной составляющей используют информацию о процессе обработки, получаемую непосредственно перед началом корректируемого цикла или в процессе его осуществления, тогда как подавление систематической составляющей связано с использованием данных о размерах изделий, обработанных до корректируемого цикла.  [c.302]

Следует отметить, что в данном случае колебание у связано не с физикой процесса (считаем, что все условия известны и постоянны), а с недостаточностью или с неточностью получаемой информации. Оценив величину у и возможные пределы ее изменения, можно использовать эти данные для прогнозирования надежности изделия методами, рассмотренными выше.  [c.227]

По своим технологическим возможностям, геометрическим размерам и массе получаемых изделий первый способ обладает большой универсальностью он с успехом применяется как для изготовления крупных базовых станочных деталей массой 20—25 т и слитков массой до 13 т, так и для изготовления мелких деталей типа пустотелых толкателей клапанов массой до 1 кг. Сущность этой технологии состоит в том, что заливку литейной формы осуществляют двумя вли более различными по составу и сюйствам чугунами через самостоятельные литниковые системы, питатели которых расположены на различных уровнях. Так, при изготовлении корпусных и базовых станочных деталей легированным чугуном заливаются только те части отливки, которые образуют направляющие или другие плоскости трения остальная часть формы заливается чугуном обычных марок (рис. 11.26). Особенностью этого метода является то, что получение качественных отливок связано с необходимостью регулировать величину переходной зоны, т. е. степень взаимного проникновения заливаемых металлов в зоне контакта.  [c.603]

СТЕКЛОКЕРАМИЧЕСКИЕ МАТЕРИАЛЫ — искусственные камни, в к-рых сочетаются в различных соотношениях стекловидная и кристаллич. фазы. Св-ва С. м. зависят от св-в, соотношения и взаимного распределения фаз. С. м. изготовляют по керамич. и по стекольной технологии, что обусловлено тесной связью, существующей между стеклом и керамикой и процессами стекольного и керамич. произ-в. Образование керамич. материалов происходит спеканием компонентов шихты, а стекла — их плавлением. Вследствие того, НТО в процессе спекания накапливается нек-рое количество жидкой фазы, в керамич, материалах наряду с кристаллич. фазой содержится также стекло. С другой стороны, стекло может быть в большей или меньшей степени закристаллизовано. Для получения С. м. с необходимыми св-вами как в случае использования стекольной технологии, так и керамич. метода применяют особые технологич. приемы, обеспе-чиваюш,ие нужное соотношение и составы стекловидной и кристаллич. фаз, а также структуру материала. При использовании керамич. метода таким приемом является синтез и подготовка кристаллич. фазы и введение в спекаемую смесь порошка стекла специально выбранного состава. Такой метод носит название метода стеклоцементного связывания, а получаемые материалы наз. стеклоцементной керамикой (см. Кри-сталлокерамика). Получение С. м. по стекольной технологии заключается в изготовлении стеклянных изделий обычными методами и затем кристаллизации их нагреванием по определ. режимам. В основе лежат процессы каталитич. кристаллизации стекла, отличающиеся тем, что при нагревании в стекле создаются фазовые границы раздела, способствующие образованию большого числа центров кристаллизации во всей массе стекла. Большое число центров кристаллизации обусловливает образование в результате кристаллизации мелкозернистой однородной структуры и, следовательно, получение материалов высокого качества. Образование фазовых границ раздела достигается в процессе термообработки стекла или в результате введения добавок (Си, Ли, Ag, Pt и др.), выделяющихся в массе стекла в тонкодисперсном состоянии или в результате выбора составов стекол, способных к микроликвации, значение к-рой состоит, по-видимому, fje только в создании границ раздела, но и в образовании микрофаз с высокой кристал-  [c.265]


Свойства получаемого электролитического хрома — твердость, износостойкость, пористость находятся в тесной связи с составом-ванны и режимом работы — температурой и плотностью тока. Хромовые электролиты отличаются плохой рассеивающей и кроющей способностью, поэтому для получения качественного покрытия-важно правильно выбирать геометрическую форму анода и катода,, их взаимное расположение, а также метод завески в.ванну и конструкцию подвески для изделий.  [c.175]

ИЗ НИХ пористый графит инфильтруют под давлением расплавленной медью, что оказалось экономически выгодным при содержании меди в композиции > 50 % пористый графит должен иметь сквозную пористость 20 - 35 % и быть прочным. Более распространен другой метод, связанный с прессованием и спеканием смеси порошка меди с различными углеродсодержащими материалами. Многие меднографитовые щетки получают из смесей порошков меди и природного графита, однако большая часть электрощеток содержит, кроме графита, и другие углеродистые составляющие, которые вводят для повышения прочности, улучшения их износостойкости и снижения контактного сопротивления. Такими добавками являются пек (повышает прочность и улучшает прессуемость смеси), сажа или коксовая мелочь (увеличивают износостойкость), резина (повышает прочность). При использовании связующего и других добавок важную роль играет операция смешивания исходных порошков, так как в конечном продукте медная составляющая должна как можно лучше обволакивать частицы углеродистой составляющей. Как правило, сначала смешивают углеродистые компоненты, например графит, сажу и пек, для чего применяют смесители с обогревом. После охлаждения смеси истирают в порошок, мелочь отсеивают и смешивают с медным порошком. Получаемую шихту прессуют при давлении 200 - 400 МПа в изделие или заготовку-Спекание проводят при 700 - 800 °С в печах непрерывного действия с защитной атмосферой. Если прессовки содержат связующие добавки,  [c.198]

Для получения требуемой ориентации волокнистого наполнителя в деталях, имеющих форму тел вращения, широко применяют метод намотки, выполняемой из волокон, предварительно пропитанных связующим (препреги) и негфопитанных. В последнем jTy4ae (метод мокрой намотки) пропитка связующим производится в процессе намотки. Метод намотки позволяет получать изделия с равномерным распределением наполнителя по объему. Содержание волокнистого наполнителя в ПКМ, получаемых намоткой, достигает 60-85%, что обеспечивает высокую прочность материала.  [c.140]

Испытания на длительную прочность при изгибе образцов, имитирующих реальные сварные стыки, являясь переходным видом испытаний от лабораторных к испрятаниям конструктивной прочности, позволяют оценить конструктивные и технологические особенности изделия и влияние большинства факторов характерных для эксплуатации. В то же время получаемые с помощью этих испытаний результаты носят в первую очередь качественный характер и позволяют ответить на вопрос о возможности или невозможности локальных разрушений, не оценивая их интенсивности. Наблюдаемое при появлении этих разрушений снижение длительной прочности на 15—20% является относительно небольшим и не может служить количественной характеристикой склонности сварных соединений к локальным разрушениям. В связи с этим указанные испытания следует использовать в качестве конечной качественной стадии оценки ранее полученных результатов лабораторных количественных методов с учетом конструктивных и технологических факторов реальных сварных соединений.  [c.139]

Общие принципы характеристики деформационно-прочностных свойств полимеров и типичные диаграммы напряжение — деформация были обсуждены в гл. 1. Оценка деформационнопрочностных свойств материала с помощью диаграмм напряжение — деформация является наиболее распространенным видом механических испытаний материалов. Этот метод очень важен с практической точки зрения и получаемые результаты привычны для инженеров. Однако связь результатов таких испытаний с реальным поведением материала в изделии не так проста, как иногда кажется. Так как вязкоупругость полимеров обусловливает высокую чувствительность их механических свойств к различным факторам, диаграммы напряжение — деформация только приближенно предсказывают поведение полимера в изделии. Обычно диаграммы напряжение — деформация или даже только их характерные точки получают для одной температуры и одной скорости деформации. Для набора информации, необходимой для инженера-конструктора, требуется проведение испытаний при нескольких температурах и скоростях деформации, что занимает много времени и связано со значительным расходом материалов. Обычно имеются данные о деформационно-прочностных свойствах при растяжении или изгибе, хотя часто необходимо знать результаты испытаний при сжатии и сдвиге, в том числе не только при одноосном, но и при двухосном нагружении. Поэтому очевидно, что, используя обычно имеющиеся данные о деформационнопрочностных свойствах полимерных материалов, инженер-конструктор должен в значительной мере полагаться на интуицию и опыт, что часто приводит к перестраховке или к ошибкам при конструировании изделий.  [c.152]


Вследствие выделения летучих соединений при термодеструкции смолы в карбокизованном пластике возникает значительная пористость, снижающая физико-механические свойства УУКМ. Поэтому стадией карбонизации углепластика завершается процесс получения лишь пористых материалов, для которых не требуется высокая прочность, например, низкоплотных УУКМ теплоизоляционного назначения. Обычно для устранения пористости и повышения плотности карбонизованный материал вновь пропитывается связующим и карбонизуется (этот цикл может повторяться неоднократно). Повторная пропитка производится в автоклавах в режиме вакуум—давление , т. е. сначала заготовка нагревается в вакууме, после чего подается связующее и создается избыточное давление до 0,6—1,0 МПа. При пропитке используются растворы и расплавы связующих, причем пористость композита с каждым циклом уменьшается, поэтому необходимо использовать связующие с пониженной вязкостью. Степень уплотнения при повторной пропитке зависит от типа связующего, коксового числа, пористости изделия и степени заполнения пор. С ростом плотности при повторной пропитке повышается и прочность материала. Этим методом можно получать УУКМ с плотностью до 1800 кг/м и выше. Метод карбонизации углепластика сравнительно прост, он не требует сложной аппаратуры, обеспечивает хорошую воспроизводимость свойств материала получаемых изделий. Однако необходимость многократного проведения операций уплотнения значительно удлиняет и удорожает процесс получения изделий из УУКМ, что является серьезным недостатком указанного метода.  [c.73]

Метод катодного (электролитического) осаждения довольно широко применяется в практике порошковой металлургии при получении металлических порошков благодаря таким преимуществам, как высокая чистота получаемых порошков, простота технолопй и аппаратурного оформления, невысокая стоимость, воспроизводимость свойств и др. Электролиз можно использовать экономически эффективно при больших и малых масштабах производства. При этом в ходе изучения процесса электрокристаллизации порошков усилия исследователей направлены на получение легко снимаемого с катода порощка. Для получения ППМ решена диаметрально противоположная задача получение на катоде порошкового материала, частицы которого прочно связаны как между собой, так и с поверхностью катода, что весьма важно при создании изделий, реализующих принцип испарительного охлаждения (тепловые трубы, капиллярные насосы, испарители, конденсаторы и др.).  [c.162]

Большое увеличение яркости изображения, получаемое на экране преобразователя, должно расширить возможность применения метода для поточного контроля изделий. В связи с этим следовало оценить влияние инерционности экрана преобразователя на качество контроля движущихся изделий. Было проведено исследование чувствительности метода на эталонах-дефектометрах, перемещающихся с различной скоростью перед экраном преобразователя.  [c.16]

Распыление под давлением (метод БВР) основано на формировании факела распыляемого ЛКМ на выходе из сопла распылителя, куда он подается под давлением 100-250 атм. По сравнению с окраской пневмораспылением зона разброса факела значительно меньше (потери сокращаются на 20-25 %), сокращается расход растворителя и цикл окраски в связи с увеличением толщины слоя, возникает возможность окраски крупногабаритных деталей и изделий вне распылительных камер. Однако класс получаемого покрытия при этом снижается до второго и даже третьего (появление отдельных неровностей, малозаметных штрихов и рисок), поэтому метод рекомендуется для окраски крупных и особо крупных изделий.  [c.824]

Комплексная стандарт 1зация. Качество машин и других изделий определяется большим числом факторов совершенством конструкций и методов проектирования и расчета машин (их составных частей н лс1алей1 на прочность, надежность, долговечность и точность качеством применяемого сырья, материалов, полуфабрикатов, покупных и получаемых по кооперации изделий степенью унификации, агрегатирования и стандартизации уровнем технологии и средств производства, контроля и испытаний уровнем взаимозаменяемости, организации производства и эксплуатации машин квалификацией рабочих и качеством их труда. Для обеспечения высокого качества машин необходима оптимизация указанных факторов и строгая взаимная согласованность требований к качеству как при проектировании, так и на этапах производства и эксплуатации. Решение этой задачи усложняется широкой межотраслевой кооперацией заводов. Например, для производства автохюбилей используют свыше 4000 наименований покупных и кооперируемых изделий и материалов, тысячи видов технологического оборудования, инструмента и средств контроля, изготовляемых заводами многих отраслей промышленности. При больших масштабах производства и широких межотраслевых связях это может быть достигнуто только методом комплексной стандартизации.  [c.313]


Смотреть страницы где упоминается термин Связующие для изделий, получаемых методом : [c.595]    [c.501]    [c.699]    [c.186]    [c.391]   
Углеродные волокна (1987) -- [ c.0 ]



ПОИСК



Получить, метод

Связующие изделий



© 2025 Mash-xxl.info Реклама на сайте