Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материал конструкционный, потеря прочности

Олово как самостоятельный конструкционный материал практического применения не имеет вследствие высокой себестоимости и недостаточно высокой механической прочности. Сплавы олова чаще всего применяют в качестве антифрикционных материалов, что позволяет сохранять машины и механизмы, уменьшая потери при трении, или в качестве припоев для соединения металлических деталей.  [c.70]


Предел текучести характеризует область упругой деформации материала и потому является важнейшей конструкционной характеристикой материала, используемой при расчетах на прочность, особенно в тех случаях, когда отсутствуют повторно-переменные нагрузки. Весьма велико значение предела текучести также для конструкций, у которых нарушение прочности определяется потерей продольной устойчивости в пластической области.  [c.326]

В то же время, известно, что сварочные напряжения снижают прочность конструкций из хрупких материалов, неспособных давать пластические деформации. Следовательно, в конструкциях из малоуглеродистых и низколегированных конструкционных сталей, внутренне уравновешенные сварочные напряжения могут снизить прочность сварного соединения лишь в том случае, если материал сварного соединения будет приведен в хрупкое состояние, т. е. практически полностью потеряет способность пластически деформироваться. Такое состояние материала может иметь место при температурах ниже критической температуры хрупкости, которая зависит от формы образца. В этом случае сварочные напряжения, суммируясь с напряжениями от внешней нагрузки, приведут к снижению величины разрушающей нагрузки. Однако, если этим исключительно тяжелым условиям работы предшествовала работа конструкции в более легких условиях (например, при положительной температуре), то снижения разрушающей нагрузки не произойдет вследствие смягчения остроты концентратора напряжений за счет пластических деформаций, происшедших при предшествующих нагружениях. Этим и объясняется то обстоятельство, что в реальных конструкциях при статических нагрузках практически не наблюдается снижения прочности от действия остаточных напряжений.  [c.97]

При конструкционной оценке прочности материала с точки зрения его коррозионной стойкости наиболее удобно пользоваться средней величиной потери, выраженной уменьшением толщины стенки (в мм/дснь или мм год).  [c.72]

Вводные замечания. В отличие от критериев потери З стойчивости, формулируемых через интегральные характеристики конструкции (критические нагрузки и частоты собственных колебаний) и имеющих поэтому интегральный характер, критерии разрушения конструкции, точнее, критерии разрушения конструкционного материала, имеют локальный характер. Действительно, разрушение по своей сути есть нарушение сплошности, целостности конструкционного материала, т. е. фундаментальное изменение свойств отдельных элементов его микроструктуры, проявляющееся, однако, в той или иной степени на всех структурных уровнях конструкционного материала. Вследствие этого оценка состояния конструкции по критериям разрушения любого структурного уровня сводится к анализу полей деформаций или напряжений в отдельных точках занимаемого ею пространства. Исследование полей, определяющих НДС конструкции, в общем случае связано с большим объемом вычислительных работ, что является принципиальным препятствием к использованию такого подхода при решении ряда практических задач и в первую очередь задач оптимального проектирования оболочек из композитов. В связи с этим представляются важными поиск и применение средств приближенного анализа конструкций на прочность. Поскольку процесс разрушения конструкций из композитов оказывается весьма сложным явлением (см. 1.9.1), то характер принимаемых в расчете на прочность приближений должен, очевидно, определяться конкретным содержанием рассматриваемой задачи. С общих позиций заметим следующее приближенный анализ конструкции на прочность может основываться на использовании  [c.151]


Учет ограничений по прочности. Анализ кривой 1 на рис. 6.3 свидетельствует о том, что к моменту потери устойчивости оболочки прогибы в отдельных точках конструкции достигают значений порядка ее толщины /г. Наличие таких прогибов в слоистой конструкции можно интерпретировать как косвенное свидетельство возможности существования в ней зон с высокими значениями деформации межслойного сдвига. Очевидно, что в этом случае существует опасность расслаивания слоистого материала, которое при сохранении уровня действующей нагрузки может явиться причиной утраты несущей способности конструкции вследствие макроразрущения конструкционного материала еще до потери устойчивости. Данное обстоятельство обусловливает необходимость учета в модели оптимизации ограничений на прочность конструкционного материала.  [c.267]

Попутно не вредно обсудить вопрос о так называемых константах материала, термине, широко употребляемом в механике сплошной среды. Константы или постоянные материала действительно существуют, пока материал рассматривается на уровне кристаллической решетки. Чем больше по масштабной шкале (укрупняя объем) мы уходим от параметров решетки, тем менее константы остаются таковыми. Для уяснения степени постоянства укажем на введенное Я.Б. Фридманом деление механических свойств на докритические, критические и закритические [261]. Все они в равной мере относятся к трем, последовательно возникающим и параллельно идущим вплоть до полного разрушения, видам деформации — упругой, пластической и разрушения. Докритические определяются по допуску на величину данного вида деформации или на появление нового, и это на стадии возрастающей несущей способности. Папример, условный предел текучести определяется по допуску на величину появившегося на фоне упругой деформации, нового вида деформации — пластической. Докритические характеристики можно считать постоянными материала. Па стадии упругой деформации модули упругости и коэффициент Пуассона — докритические характеристики и, следовательно, постоянные материала. По, например, критическое напряжение Эйлера сжатого упругого стержня есть механическая характеристика, отражающая свойства упругости в момент потери устойчивости и, как и положено критической характеристике, зависит не только от докрити-ческих характеристик, но и от формы и размеров стержня и условий закрепления. Аналогично предел прочности (временное сопротивление) является критической характеристикой, поскольку шейкообразо-вание представляет собой смену форм равновесия и сопровождается прекращением роста несущей способности. Естественно, что предел прочности должен зависеть и зависит от размеров, формы образца и схемы приложения нагрузки. По привычка считать предел прочности постоянной материала (естественно, имеется в виду неизменность условий нагружения, скорости, температуры, среды и т.п.) есть результат стандартизации метода его определения. Изменив габариты, форму сечения, взяв, наконец, вообще реальную конструкционную деталь, получим сильно различающиеся значения пределов прочности, что и должно быть для критической характеристики. Поэтому неудивительно, что при разрушении реальной детали напряжение в  [c.14]

Полиэтилен высокого давления (кабельный) П-2003-К, П-2008-К, П-2015-К Конструкционный электроизоляционный материал. Отличается низкой диэлектрической проницаемостью, высокой электрической прочностью, низким значением тангенса угла диэлектрических потерь, высоким удельным объемным сопротивлением, незначительным влагопоглощением. повышенной стойкостью к радиации, хорошей гибкостью при низких температурах, высокой температурой теплового Детали высокочастотных устройств и изоляция высокочастотных и ультравысокочастотных кабелей и проводов, трубы напорные по МРТУ 6М 7821-61 на рабочее давление до )кГ/см по ВТУ 74022-53-61 на рабочее давление до 5 кГ см  [c.41]


Выбор конструкционного материала — не прихоть конструктора, не дань моде — это результат тщательного анализа прочностных, весовых, технологических и эксплуатационных характеристик материалов, имеющихся в распоряжении конструктора. Масса элементов конструкции, испытывающих в основном растягивающие нагрузки, обратно пропорциональна удельной прочности материала, из которого изготовлен элемент (т =5 ((7 в/р) Для элементов, нагруженных сжимаюЩ[ими нагрузками, допускаемыми в эксплуатации, являются напряжения потери устойчивости, т. е. состояние, при котором элемент резко изменяет свою форму, иногда без разрушения материала. Критические напряжения потери устойчивости элемента конструкции (например, стержня) зависят от характеристик жесткости материала, из которого элемент изготовлен, а не от характеристик прочности. Поэтому масса сжатого элемента прямо пропорциональна плотности материала и обратно пропорциональна удельной жесткости т Е/р) Масса слабонагруженных элементов практически не зависит от характеристик прочности материала и пропорциональна только его плотности (т р). Характеристики аэроупругости несущих поверхностей самолета — крыла, оперения в значительной степени определяются их жесткостью, которая может оцениваться, например, частотой собственных колебаний поверхностей (V). В первом приближении частота собственных колебаний крыла большого удлинения может быть оценена как частота колебаний балки  [c.346]

Ресурс работы. Основной причиной, приводящей к перегоранию высокотемпературных тепловых труб или потере их работоспособности, является массоперенос как металлических, так и неметаллических элементов конструкционного материала из зоны конденсации в зону испарения. Забивание фитиля при кристаллизации перенесенных масс приводит к его осущению. Повышение концентрации неметаллических примесей в зоне испарения способствует усилению как межкристаллитной коррозии материала стенки и фитиля, так и их растворения с одновременным ослаблением прочности.  [c.88]

Полиэтилен. Этот материал обладает рядом ценных свойств, благодаря которым он является одним из основных термопластичных конструкционных материалов. Он имеет достаточную механическую прочность, высокую стойкость к действию концентрированных кислот и щелочей, хорошую сопротивляемость воздействию масел и некоторых растворителей, проникновению водяных парлв, имеет ничтожную влагопоглощаемость (0,05%), обладает низкой диэлектрической проницаемостью и малым значением тангенса диэлектрических потерь, высокой электропрочностью (40 10 —44 10 л /л ) и удельным объемным сопротивлением, отличается прекрасной гибкостью при низких температурах (до 213° К), нетоксичен. К недостаткам его следует Отнести подверженность старению под действием ультрафиолетового излучения, кислорода воздуха, тепла и т. д.  [c.15]


Смотреть страницы где упоминается термин Материал конструкционный, потеря прочности : [c.260]    [c.370]    [c.17]    [c.9]    [c.177]    [c.402]   
Справочник авиационного инженера (1973) -- [ c.59 ]



ПОИСК



Конструкционная прочность

Конструкционная прочность материалов

Материал конструкционный

Материалы Прочность



© 2025 Mash-xxl.info Реклама на сайте