Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Резка металлов — Сравнение с другой обработкой

Резка металлов — Сравнение с другой обработкой 275  [c.455]

По сравнению с другими способами резки металлов газовая резка имеет большие преимущества высокую производительность и экономичность хорошее качество резки, позволяющее не производить дальнейшей механической обработки разрезанной поверхности возможность резки металлов больших толщин (до 2000 мм) и вырезки сложных по форме деталей уменьшение отходов металла.  [c.345]


По сравнению со свободной ковкой горячая объемная штамповка позволяет получать поковки более сложной формы и с лучшим качеством поверхности. Кроме того, благодаря ее применению снижаются припуски и допуски в два-три раза и обеспечивается точность изготовления поковок до 4—3 класса. При горячей объемной штамповке повышается производительность труда и уменьшается расход металла на изделие. Для штампованных поковок резко сокращается объем механической обработки. Во многих случаях штампованные поковки не требуют механической обработки по поверхностям, не сопрягаемым с поверхностями других деталей машин. При массовом и крупносерийном производстве стоимость деталей, изготовленных штамповкой, в два-три раза меньше, чем изготовленных резанием из проката. Обычно масса штампованных поковок не превышает 100—200 кг.  [c.135]

Газопламенная обработка металлов - это ряд технологических процессов, связанных с обработкой металлов высокотемпературным газовым пламенем. Наиболее широкое применение имеет газовая сварка и резка, которые, несмотря на более низкую производительность и качество сварных соединений по сравнению с электрическими способами сварки плавлением, продолжают сохранять свое значение при сварке тонколистовой стали, меди, латуни, чугуна. Преимущества газовой сварки и резки особенно проявляются при ремонтных и монтажных работах ввиду простоты процессов и мобильности оборудования. Кроме сварки и резки газовое пламя используется для наплавки, пайки, металлизации, поверхностной закалки, нагрева для последующей сварки другими способами или термической правки и т.д.  [c.81]

При сборке отдельных деталей в сборочные единицы широко применяется сварка, так как по сравнению с клепкой она ускоряет процесс сборки деталей в узлы, дает экономию металла за счет устранения заклепок, накладок и других деталей, необходимых при клепке. Применение сварки способствует облегчению узлов за счет снижения толщины стенок соединяемых деталей, применения специальных прокатных профилей. Использование сварных конструкций при проектировании машин дает экономию металла по сравнению с клепаными до 20%, а по сравнению с литыми—до 50%. Сварка позволяет применять конструкцию узлов с резкими переходами в сечениях отдельных элементов, чего не допускает литая конструкция. Применение штампосварных конструкций упрощает процесс производства и снижает припуски на механическую обработку.  [c.284]


Сравнение экономических и технических показателей различных методов термической резки показывает, что плазменно-дуго-вая резка является весьма прогрессивным процессом, имеющим в определенных условиях неоспоримые преимущества перед кислородной и другими способами резки. Это связано с высокой производительностью процесса, несложностью его автоматизации и возможностью обработки практически любых металлов.  [c.112]

Кузнечно-штамповочное производство занимает одно из ведущих мест в машиностроении. При изготовлении деталей ковкой и особенно штамповкой по сравнению с другими видами обработки достигается значительная экономия металла, повышается производительность труда и улучшается качество деталей. С развитием машиностроения повышается роль горячей объемной штамповки. Достаточно сказать, что современный самолет содержит по весу до 90, автомобиль до 80, а паровоз до 60% штампованных деталей. При штамповке, выполняемой современными прогрессивными методами, повышается точность, резко снижается или вовсе отпадает применение резания на металлообрабатывающих станках. Соотношение между парком кузнечного и металлорежущего оборудования является одним из критериев оценки уровня культуры производства.  [c.10]

Преимущества лазерной резки по сравнению с традиционными методами следующие возможность получения узкого реза с малой зоной теплового воздействия минимальные неровности поверхности реза и малые деформации отсутствие физического контакта с инструментом возможность обработки сверхмягких, сверхтвердых, тугоплавких, токсичных и других материалов возможность получения контура сложной формы и полной автоматизации процесса. Лазерная резка листа на полосы может быть заменена другой технологией. Так, для листового металла толщиной 5— 100 мм экономически более эффективна плазменная резка, а также резка эрозионным способом.  [c.288]

Последнее время находит применение новый метод отделочной обработки путем алмазного выглаживания. Алмазное выглаживание резко снижает шероховатость поверхности, пр1И этом упрочняется поверхностный слой с образованием в нем благоприятных напряжений сжатия. Особенностью алмазного выглаживания в отличие от других методов обработки пластическим деформированием является применение алмаза в качестве инструментального материала. Алмаз в этой ролн обладает существенными преимуществами по сравнению с другими инструментальными материалами чрезвычайно высокой твердостью низким коэффициентом трения по металлу высокой степенью чистоты, с которой может быть отполирован алмаз.  [c.176]

Энергия, выходящая из ЛПМ небольшими порциями с большой пиковой мощностью при высокой ЧПИ, обеспечивает высокорегулируемое и прогнозируемое удаление материала из обрабатываемого участка при образовании минимальной зоны термического влияния. Короткоимпульсное излучение ЛПМ создает заметно более низкий порог по энергии для эффективной обработки материала, чем лазеры непрерывного излучения, которые приводят к образованию экранирующей плазмы [239]. Зона удаления (обработки) материала жестко ограничивается пятном фокусировки, которое у ЛПМ меньше, чем у любого ИК-лазера. Например, пятно фокусировки пучка с дифракционной расходимостью у газового СОг-лазера в 20 раз больше, чем у ЛПМ. В твердотельных лазерах на YAG Nd из-за возникающих в нем тепловых деформаций качество пучка излучения в несколько раз ниже дифракционного предела [240]. Еще одно преимущество ЛПМ перед ИК-лазерами состоит в том, что металлы имеют меньший коэффициент отражения в диапазоне излучения ЛПМ (40-50%), чем в ИК-диапазоне (> 95%) [241]. Такие металлы, как Л1 и Си, обрабатывать с помощью СО2- и других ИК-лазеров весьма затруднительно из-за сочетания высокого отражения ИК-излучения и очень высокой удельной теплопроводности металлов. Поэтому получить расплав с помощью этих лазеров очень сложно [233, 242. Наличие в излучении ЛПМ двух длин волн в видимой области спектра (0,51 и 0,58 мкм) позволили легко обрабатывать и алюминий, и медь. Многие другие материалы также эффективно обрабатываются с помощью ЛПМ. Например, ЛПМ режет кремний в 10 раз быстрее, нежели другие лазеры, близкие по назначению [243]. Сравнение скорости резки, выполненной короткоимпульсным YAG Nd-лaзepoм  [c.235]


Электроконтактная разновидность электроэрозионного способа была применена еще в 1925 г. для резки заготовок. Она внешне напоминает аиодно-механическую обработку. Различие состоит в том, что здесь электролит не применяется и процесс осуществляется обычно на воздухе. Иногда зона обработки охлаждается сжатым воздухом, маслом или эмульсией. Таким образом, Б электроконтактном способе исключено электрохимическое растворение обрабатываемого материала. Скорость перемещения 1нструмента относительно детали при электроконтактном способе увеличена в 2,5—3 раза по сравнению с анодно-механической обработкой и составляет 30—80 м/сек. Деталь и инструмент подключаются к источнику переменного или реже постоянного тока напряжением 20—40 в. Электроконтактный способ позволяет подводить к месту обработки очень большие мощности (50—200 кет) и получать наибольшие съемы металла по сравнению с другими разновидностями электроэрозионной обработки. При обработке обычных сталей глубина оплавленного слоя достигает 1 — 1,5 мм, при обработке жаропрочных сталей 0,2—0,3 мм. Интенсивность съема металла достигает 500 кГ/ч [96]. Электроконтактный способ пригоден для черновой обработки, например, обдирки слитков и поковок из специальных сплавов.  [c.357]

Ширина вырезаемой полосы характеризует жесткость металла, от которой зависит деформация при резке. Допустим, что внутри большого листа требуется вырезать деталь прямоугольной формы (рис. 88). Первый рез внутри большого, а значит и максимально жесткого листа, как правило, вызывает меньший прогиб по сравнению с прогибами, которые получатся на других сторонах прямоугольника. Это объясняется тем, что первый рез происходит при наибольшей жесткости как самого листа, так и вырезаемого прямоугольника. Последующие резы по сторонам прямоугольника выполняются при уменьшенной жесткости (защемленности металла). Поэтому при вырезке деталей из большого листа сначала режут по тем сторонам детали, которые имеют наименьший припуск на механическую обработку кромки или которые имеют большую длину.  [c.104]


Смотреть страницы где упоминается термин Резка металлов — Сравнение с другой обработкой : [c.32]    [c.94]    [c.550]   
Справочник машиностроителя Том 5 Книга 2 Изд.3 (1964) -- [ c.275 ]



ПОИСК



Другие сравнения

Резка металлов

Резка металлов — Сравнение с другой

Сравнение МКЭ и МГЭ



© 2025 Mash-xxl.info Реклама на сайте