Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анализ динамики системы с распределенными параметрами

Анализ динамики системы с распределенными параметрами  [c.137]

В отдельную группу можно выделить методы анализа динамики гидросистем с распределенными параметрами (упругостью, массой, а иногда и сопротивлением). Эти методы развиваются в первую очередь для систем гидропрессов, в которых стремятся получить большие ускорения движущихся масс и не боятся ударов, и для гидропередач раздельного исполнения с длинными трубопроводами. Математический аппарат, используемый при этих исследованиях, весьма сложен, так как приходится решать дифференциальные уравнения в частных производных. Но они позволяют учесть распространенные волны давления по трубопроводу и выявить реакцию системы на высокочастотное возбуждение. Из-за математических трудностей решают пока частные задачи с ограниченным (один, два) количеством участков магистралей, в которых учитывается распределение жидкости по длине магистрали, для линейной модели гидросистемы [12, 27, 42, 45, 54, 58, 59, 64, 67].  [c.262]


В общем случае для анализа особенностей течения жидкости в тракте конкретного типа необходимо учитывать ряд физических свойств жидкости—сжимаемость, инерцию, вязкость. Нестационарное движение жидкости с учетом всех ее свойств описывается уравнениями гидромеханики (см. подразд. 2.2), решение которых вызывает большие трудности. Поэтому для упрощения анализа динамики пневмогидравлических систем целесообразно формировать математические модели, описывающие нестационарное течение жидкости, отдельно для низких частот (до 50 Гц) и для более высоких частот (до 500 Гц). Для низкочастотной области можно рассматривать участки гидравлических и газовых трактов ЖРД как системы с сосредоточенными параметрами, что существенно упрощает их математическое описание. При анализе динамики ЖРД в более широком диапазоне частот необходимо учитывать акустические эффекты. Соответственно приходится решать уравнения гидромеханики в частных производных, т. е. рассматривать участки трактов как системы с распределенными параметрами (см. подразд. 2.4, 3.3).  [c.32]

Решение (3.5.5) можно использовать при анализе динамики столба газа в коллекторе, рассматриваемом или как система с сосредоточенными, или как система с распределенными параметрами. Для описания динамики коллектора, кроме зависимости (3.5.5), нужны еще уравнения сохранения количества движения и баланса масс газа, форма записи которых зависит от диапазона рассматриваемых частот.  [c.191]

Теоретические исследования устойчивости потока развиваются в основном в двух направлениях по пути непосредственного численного интегрирования на ЭЦВМ системы уравнений в частных производных, описывающих динамику процесса в обогреваемой трубе, и методом анализа распределения корней характеристического уравнения (без прямого решения исходной системы уравнений) и выделения областей устойчивости. Эти исследования позволяют охватить очень широкие диапазоны изменения режимных и конструктивных параметров, а при изучении влияния одного из параметров поддерживать другие в строго заданных пределах.  [c.52]

К настоящему времени существенное развитие получили методы анализа динамики и устойчивости периодических режимов движения одно- и двухмассовых виброударных систем. Получены новые результаты, связанные с обобщением этих методов и распространением их на многомассовые системы с одной люфтовой парой, начаты работы по развитию теории виброударных систем с распределенными параметрами, а также систем, содержащих несколько люфтовых пар. В последние годы изучалось влияние ускорений 2-го порядка на динамические процессы, происходящие в машинах. Установлено, что воздействие этих ускорений обнаруживается для систем, обладающих упругими звеньями, и что в них, в зависимости от соотношений конструктивных параметров и режимов движения, возникают не только деформации от сил инерции, но и дополнительные динамические нагрузки, вызванные действием нестационарного ускорения.  [c.30]


В связи с определяющим влиянием трубопроводов на амплитуду вынужденных колебаний жидкости в исследованной системе ниже проведен анализ динамики изолированных трубопроводов с жидкостью в условиях механических колебаний при частотах, которые меньше частоты 1-го тона акустических колебаний. При выводе уравнений сделаем следующие основные допущения трубопровод цилиндрический, жесткий течение жидкости одномерное потери по тракту, равномерно распределенные по длине трубопровода, учитываются в виде сосредоточенных сопротивлений в граничных условиях жидкость сжимаема и инерционна, скорость ее течения мала по сравнению со скоростью звука отклонения параметров о г их значений на равновесном режиме не велики (допустима тииеаризация) виброперегрузки направлены вдоль оси трубопровода под углом а.  [c.237]

В данной главе, включая и приводимые ниже задачи, рассматрив-нелинейные модели динамики, не содержащие на фазовой плоско каких-либо предельных циклов и не являющиеся автоколебательны системами. Это не значит, что в ядерных реакторах невозможны авто лебательные режимы, хотя они там достаточно редки и, как прави нежелательны. Причиной возникновения автоколебаний обычно сл транспортные запаздывания, распределенность параметров, нелиней зависимость реактивности от переменных реактора и др. Качественный отчасти количественный) анализ нелинейных моделей динамики реакто с j eTOM некоторых из перечисленных факторов изложен в работах ( 19]. Этот анализ в значительной мере использует теорию рождения пер дических решений и позволяет выявить условия существования автоко бательных режимов в ядерных реакторах.  [c.126]

Так как параметры теплообменника являются распределенными и взаимосвязанными, уравнения динамики для противоточного теплообменника имеют очень сложный вид, и получение частотных характеристик даже разомкнутой системы связано с трудоемкими вычислениями. В случае многоходовых теплообменников или теплообменников, в которых происходит резкое изменение скоростей пли 1шых физических параметров потоков, для определения динамических характеристик приходится прибегать к помощи цифровых вычислительных машин. Хотя подобные расчеты занимают всего несколько секунд машинного времеии, затраты на программирование оправдываются лии. ь в том случае, когда решается целый ряд аналогичных задач. Регулирование теплообменника, вообще говоря, представляет собой достаточно простую задачу, так что, за исключением случаев, когда требуется очень высокая точность поддержания регулируемого параметра, упрощенные методы анализа динамических характеристик дают достаточно точные для практических целей данные.  [c.284]


Смотреть страницы где упоминается термин Анализ динамики системы с распределенными параметрами : [c.132]   
Смотреть главы в:

Автоматическое регулирование жидкостных ракетных двигателей  -> Анализ динамики системы с распределенными параметрами



ПОИСК



Анализ динамики

Анализ распределений

Параметр распределения

Параметр системы

Распределение системы

Система анализ

Система распределенная

Системы Динамика



© 2025 Mash-xxl.info Реклама на сайте