Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые общие теоремы о линейных дифференциальных

Материал этой главы расположен по следующему плану. Разд. 2,1 посвящен свойствам решений однородных дифференциальных уравнений различного типа. По характеру зависимости коэффициентов этих уравнений от времени они подразделяются на уравнения с постоянными, периодическими, квазипериодическими коэффициентами, а также на уравнения более общего типа. В разд. 2.2 мы покажем, как применить понятие инвариантности относительно групповых операций к уравнениям двух первых типов. В разд. 2.3 мы познакомимся с неоднородными дифференциальными уравнениями. Некоторые общие теоремы из алгебры и теории линейных обыкновенных дифференциальных уравнений (связанные системы) приведены в разд. 2.4. В разд. 2.5 вводятся пространства дуальных решений. Общий вид решений для случая постоянных и периодических матриц коэффициентов рассмотрен соответственно в разд. 2.6—2.8. В разд. 2.8 и в начале разд. 2.7 мы затрагиваем некоторые аспекты теории групп, а из разд. 2.8 читатель сможет почерпнуть начальные сведения по теории представлений. В разд. 2.9 мы излагаем теорию возмущений, позволяющую получить явные решения для случая матриц периодических коэффициентов.  [c.91]


Предыдущие определения и теорема 10.5 характеризуют некоторые общие свойства конечноэлементных аппроксимаций, удобные для равномерного приближения заданной функции Р (х). Однако, как указывалось ранее, при получении конечноэлементных решений краевых задач требуется полнота базисных функций по энергии. Для решения вопроса полноты по энергии необходимо, конечно, уточнить тип оператора X, входящего в определение энергетического скалярного произведения. Мы ограничимся рассмотрением вопроса полноты для довольно широкого класса линейных положительно ограниченных снизу дифференциальных  [c.126]

При попытках решения задачи о полном статистическом описании турбулентности при помощи определения характеристического функционала поля скорости из уравнения Хопфа мы сталкиваемся с той трудностью, что сколько-нибудь общего математического аппарата для решения линейных уравнений в вариационных производных еще не создано (и даже отсутствуют точные теоремы об условиях существования и единственности решений таких уравнений). Методы решения некоторых специальных типов линейных уравнений в вариационных производных, развитые, в частности. Татарским (1961) и Новиковым (1961г), для решения уравнения Хопфа оказываются недостаточными. Об единственном общем подходе к теории интегрирования уравнений в вариационных производных, связанном с использованием так называемых континуальных интегралов, мы еще будем говорить позже (в п. 29.5) пока, однако, мы рассмотрим некоторые более простые приближенные методы, аналогичные методам решения дифференциальных уравнений с помощью рядов по степеням независимых переменных или входящих б уравнения параметров.  [c.641]

Всё, что было сказано до сих пор о простейшем случае вариационного исчисления, можно распространить на самый общий случай, в котором под знаком интеграла стоит функция, содержащая произвольно большое число переменных у, з, и, зависящих от одной переменной х, и сверх того еще производные до какого угодно высокого порядка от этих переменных. Когда такая задача сведена к дифференциальному уравнению первого порядка с двумя переменными, то последнее интегрирование также может быть выполнено. Но, чтобы получить этот результат, необходимо привести некоторые теоремы относительно выражений, которые встречаются при решении линейных уравнений и которые названы Лапласом результантами, Гаус-..лом — определителями и Коши — альтернативными функциями.  [c.74]


Подобным же образом, как и в только что приведенном примере, можно также показать [8], что суш ествует каноническая система дифференциальных уравнений с аналитической функцией Гамильтона Н, для которой вообще нет никаких сходящихся интегралов д(х, у), кроме самой Н и сходящихся степенных рядов относительно Н. В случае п = 2 для построения такой функции Н можно исходить опять из формул (18) и (19), но нри этом 1/q нужно заменить еще более быстро стремящейся к нулю функцией от q. Точнее, любую функцию Гамильтона с квадратичной частью i xiy + РХ2У2) произвольно малым изменением коэффициентов членов высших порядков можно превратить в такую, которая уже обладает указанным свойством, т. е. у которой отсутствуют другие сходящиеся интегралы. В связи с этим можно упомянуть теорему Пуанкаре [9]. В ней рассматриваются функции Гамильтона H z, 11), которые, кроме z, . .., Z2n, зависят еще от параметра , причем аналитически около точки = 0. Тогда теорема гласит, что при некоторых предположениях относительно H z, 0) и производной H z, 0), которые в общем случае вьшолнены, не существует других сходящихся степенных рядов по 2п + 1 переменным, . .., Z2n и /i, являющихся интегралами системы Гамильтона, соответствующей функции H(z, 11), кроме степенных рядов по самим Н ъ л. Однако в теореме Пуанкаре ничего не говорится о фиксированных значениях параметра jjL. Мы уже упоминали выше, что система Гамильтона в случае линейно независимых собственных значений Ai,. .., Л может приводиться к нормальной форме подстановкой, задаваемой расходящимся степенным рядом, если не существует п независимых сходящихся интегралов здесь мы построили такой пример. Теперь можно было бы думать, что множество чисто мнимых корней (f = 1,. .., гг), для которых преобразование в нормальную форму представлено расходящимися рядами, имеет п-мерную меру Лебега, равную нулю, как это было  [c.280]


Смотреть страницы где упоминается термин Некоторые общие теоремы о линейных дифференциальных : [c.579]   
Смотреть главы в:

Синергетика иерархии неустойчивостей в самоорганизующихся системах и устройствах  -> Некоторые общие теоремы о линейных дифференциальных



ПОИСК



Дифференциальные линейные

Некоторые общие теоремы о линейных дифференциальных уравнениях

Общие теоремы



© 2025 Mash-xxl.info Реклама на сайте