Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

СПЛОШНЫЕ ЭЛЕМЕНТЫ ЧАСТНЫЕ СЛУЧАИ

СПЛОШНЫЕ ЭЛЕМЕНТЫ ЧАСТНЫЕ СЛУЧАИ  [c.325]

Сплошные элементы частные случаи  [c.326]

Частные случаи ассоциаций - обобщение и агрегирование. Отношение обобщения (наследования) изображают сплошной линией, заканчивающейся незакрашенной стрелкой около родительского элемента. Отношение агрегирования (отношение часть - целое ) показывают такой же линией, но с ромбовидной стрелкой, заканчивающейся у элемента целое . Ромбовидная стрелка закрашивается, если части не могут существовать без целого, т.е. если при ликвидации класса целое ликвидируются и все его части . Пример фрагмента диаграммы классов с отнощениями обобщения и агрегирования приведен на рис. 2.3, б.  [c.186]


Рассмотрим элемент стержня (рис. 7.1) при движении. Он отличается от элемента стержня, используемого в статике (см. рис. 3.3), тем, что его центр тяжести имеет поступательную скорость V и угловую скорость (О. в общем случае на элемент стержня могут действовать распределенные силы и моменты (рис. 3.3). При исследовании движения стержня внутренние силовые факторы (векторы Q и М), а также и, v и (о являются функциями s и t, что приводит к уравнениям в частных производных. В гл. 3 рассмотрены два случая возможных переменных при описании кинематики сплошной среды (переменные Эйлера и Лагранжа). На элемент стержня, показанного на рис. 7.1, действует сила инерции  [c.161]

Расчеты на прочность изделий сложной формы. Излагая в предыдущей главе теорию сложного напряженного состояния, мы совершенно обошли молчанием вопрос о том, каким образом определить напряженное состояние в телах, подверженных действию сил. Общая задача об определении напряжений и деформаций в упругом теле произвольной формы, подверженном действию произвольных внешних сил, является предметом теории упругости, которая представляет собою раздел механики сплошной среды и развивается в направлении создания и усовершенствования методов решения соответствующих краевых задач для некоторых систем дифференциальных уравнений в частных производных. Несмотря на огромные успехи математической теории упругости, далеко не все задачи, представляющие практический интерес, удается решить во многих случаях, даже когда точное решение или метод его отыскания известны, практическое использование этого решения для расчета на прочность затруднительно ввиду чрезвычайной сложности и громоздкости вычислений. с другой стороны, знания распределения напряжений в теле в упругой стадии его работы еще недостаточно для суждения о прочности. Как мы убедились на примере статически неопределимых стержневых систем, переход некоторых элементов в состояние текучести еще не означает разрушения системы в целом. Тем более это относится к телу, находящемуся в условиях сложного напряженного состояния. Достижение состояния текучести в одной или нескольких точках само по себе не является опасным окруженный упругими областями, материал не имеет фактической возможности течь. В то же время, после того как состояние текучести где-та достигнуто, дальнейшее увеличение нагрузки приводит к образованию пластических зон конечных размеров.  [c.104]


Определение Gggn рассмотрим на примере сотового заполнителя (рис. 5). Предполагаем, что внешние слои н заполнитель панели деформируются в пределах упругости, а все элементы панели сохраняют свою форму. Для определения приведеииого модуля сдвига в плоскости хог вырежем из сотового заполнигеля параллелепипед, показанный иа рис. 5, 5 пунктиром I. Отдельно этот параллелепипед приведен иа рнс, 6, о. Рассмотрим также параллелепипед сплошного заполнителя таких же размеров. Считая грань аЬсе заделанной, приложим к грани а Ь с е в обоих случаях касательную силу Q. Определим вертикальные перемещения грани а Ь с е обоих параллелепипедов. Изгибом пластинок, образующих соты, будем пренебрегать. В работе (30) показано, что данное пренебрежение в некоторых частных случаях может привести к занижению модуля сдвига до 20%, что вполне приемлемо для практических расчетов н идет в запас проч-  [c.157]

Энгессер первый занялся теорией продольного изгиба составных колонн ). Он исследовал влияние поперечной силы на величину критической нагрузки и нашел, что для сплошных колонн ЭТО влияние мало и им можно пренебречь, в сквозных же или в составных стойках оно может оказаться практически значительным, в особенности если ветви таких стоек или колонн соединить между собой одними лишь планками. Энгессер вывел формулы для определения того отношения, в котором в каждом частном случае следует уменьшать значения эйлеровой критической нагрузки, чтобы учесть гибкость элементов решетки.  [c.358]

Анализ напряжений состоит в исследовании внешних и внутренних сил, действующих на сплошную среду. Он также является общим для всех сред, однако выбор наиболее удобной формулировки зависит от сво ств среды. Для упругой среды наиболее удобными являются лагранжевы координаты. Однако в учебниках обычно используются эйлеровы координаты, и мы начнем с них. Основная теорема состоит в утверждении о существовании симметричного тензора второго порядка оц, такого, что сила, действующая на малый элемент площади <13, нормаль к которому имеет направляющие косинусы. Пи определяется формулой = ацП1йЗ. В частном случае параллелограмма со сторонами и 8xt  [c.15]

Однако решения методом конечных элементов для сплошных конструкций, таких, как тонкая пластина, изображенная на рис. 2.4 (е), пространственное деформируемое тело, изгибаемая пластина и оболочка, не являются точными. Для иллюстрации этого утверждения предположим, что треугольные элементы, изображенные на рис. 2.4 (ё), построены в предположении, что для поля перемещений вдоль сторон элемента имеет место квадратичный закон распределения. На рис. 2.5(а) изображено деформированное состояние двух выбранных элементов. Если соединить элементы, как указано выше, то, вообще говоря, будет нарушена непрерывность перемещений вдоль линии, соединяющей два элемента (см. рис. 2.5 (Ь)). Соединения в вершинах элементов обеспечивают непрерывность только в этих точках. Квадратичная функция однозначно определяется по трем точкам, а так как только две концевые точки соприкасающихся сторон участвуют в определении формы смещений вдоль ребра, перемещения краев элементов будут различаться, за исключением некоторых частных случаев. Если псполь-зовать большее количество элементов, как указано на рис. 2.5(с), то различие в смещениях на сторонах соседних элементов станет меньше и вызванная указанным обстоятельством погрешность решения также уменьшится. Эта ошибка конечна для любого конечного числа элементов, поэтому решение является приближенным.  [c.43]

В связи с отсутствием в настояш ее время алгоритмов для решения такого рода дискретных задач в данной работе осуш ествляется направленный перебор, используюш ий основные идеи покоординатного релаксационного спуска с элементами произвольности (случайности) в процессе поиска [39]. Метод покоординатного спуска имеет многие преимуш ества по сравнению с методом сплошного перебора. Количественно перебор в том и другом случаях можно сопоставить как произведение и сумму возможных вариантов [36]. И хотя этот метод в некоторых случаях не приводит к получению абсолютного оптимума, его можно применить для решения самых общих задач оптимизации дискретно изменяющихся переменных. Методу покоординатного спуска, используемому для решения задач с непрерывными переменными, уделяется внимание в работах многих авторов, в том числе в [22, 40, 41]. Различные варианты этого метода иногда называют методами Гаусса — Зейделя, Саусвелла и т. д. [24]. Согласно этому методу спуск из очередной точки производится по направлению одной из координатных осей. Последовательность, в которой выбираются эти оси, может быть различной. Обычно они берутся в фиксированном циклическом порядке (чаще всего просто поочередно). Иногда выбирается та ось, для которой величина д<Мдх максимальна. Этот способ вряд ли целесообразен при большом числе переменных, так как в каждой точке выполняется большой объем вычислений для определения частных производных по всем переменным.  [c.25]



Смотреть страницы где упоминается термин СПЛОШНЫЕ ЭЛЕМЕНТЫ ЧАСТНЫЕ СЛУЧАИ : [c.328]    [c.340]   
Смотреть главы в:

Метод конечных элементов Основы  -> СПЛОШНЫЕ ЭЛЕМЕНТЫ ЧАСТНЫЕ СЛУЧАИ



ПОИСК



К п частный

Частные случаи

Частный случай



© 2025 Mash-xxl.info Реклама на сайте