Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Время рассеяния импульса на фононах

Время рассеяния импульса на фононах.  [c.46]

В заключение отметим, что в настоящее время наиболее мощным средством экспериментального наблюдения волн в решетке является неупругое рассеяние тепловых нейтронов на фононах. Энергии и импульсы тепловых нейтронов и фононов сравнимы между собой. При неупругом столкновении нейтрон теряет или приобретает значительную долю своей энергии, в результате чего можно определить как изменение длины волны (изменение энергии), так и изменение направления (изменение импульса). Если отдельный фонон возбуждается или исчезает в результате столкновения с нейтроном, то изменение длины волны нейтрона опре-  [c.162]


Прежде чем приступить к математическим выкладкам, имеет смысл хотя бы кратко обсудить физическую сторону задачи. Важная особенность нелинейного процесса переноса заряда состоит в том, что он характеризуется несколькими временами релаксации. Электрон-электронное взаимодействие, описываемое оператором Я, приводит к термализации электронов за некоторое время релаксации Заметим, что это взаимодействие не меняет суммарный импульс электронов и их полную энергию. Поэтому, если не учитывать других взаимодействий, на достаточно грубой шкале времени состояние электронной подсистемы можно характеризовать средним значением полного импульса (Ре) и средней энергией HJK Релаксация импульса электронов обусловлена их взаимодействием с фононами и примесными атомами. Если температура не слишком велика, то в реальных полупроводниках характерное время релаксации импульса электронов г определяется, в основном, их упругим рассеянием на примесных атомах ). С повышением температуры возрастает роль электрон-фононного взаимодействия, которое приводит к релаксации как среднего импульса электронной подсистемы, так и средней энергии. Тогда вместо и г нужно использовать другие значения времен релаксации с учетом вклада электрон-фононного взаимодействия. В главе 5 первого тома (см. приложение 5Б) было показано, что следует различать изотермические (Tgg С г) и адиабатические (г > г) условия. В первом случае для описания состояния электронной подсистемы достаточно задать средние значения полного импульса и энергии, а во втором требуется более детальное описание, скажем, с помощью функции распределения электронов.  [c.100]

Эффект рассеяния может быть различным для различных процессов переноса, в частности для электропроводности и теплопроводности. Это связано с тем, что, например, электрон-фононное рассеяние, не сопровождающееся изменением импульса и заряда, не оказывает влияния на значение электросопротивления. Однако электрон-фононное рассеяние оказывает влияние на теплопроводность, так как вызывает изменение энергии. Фонон-фононное рассеяние с сохранением импульса не влияет на теплопроводность, так как при этом энергия не меняется. Таким образом, времена релаксации для процессов электропроводности и теплопроводности в общем случае имеют разное значение.  [c.457]

Длительность возбуждаемых импульсов деформации может ограничиваться снизу не только величиной т , но и временем пробега звука по области тепловыделения, а характерный размер области нагрева решетки I определяется либо длиной поглощения света /п б 1, либо длиной теплопроводности — расстоянием, на которое прогреется кристалл за время оптического воздействия за счет переноса энергии электронами, фононами и т. д. Фононная теплопроводность всегда происходит со скоростями, не превышающими звуковую, и поэтому не приводит к уширению акустических импульсов. Движения электронов в металлах и электронно-дырочной плазмы в полупроводниках может существенно увеличить область нагрева решетки, особенно при низких температурах. При комнатных температурах диффузия носителей в значительной мере замедлена из-за сильного рассеяния на тепловых колебаниях решетки. Поэтому для термоупругой генерации сверхкоротких импульсов деформации необходимо одновременно уменьшать длительность лазерного воздействия и длину поглощения света. Наконец, нельзя забывать, что время нагрева решетки может определяться не временем оптического воздействия, а временем передачи энергии от электронов к фононам, что также препятствует укорочению длительности импульсов деформации.  [c.162]


При решении кинетического уравнения большие упрощения возникают благодаря тому, что установление равновесия по энергиям в фононном газе происходит быстрее указанных выше процессов. Установление энергетического равновесия осуществляется при рассеянии фононов друг другом на малые углы соответствующие времена были вычислены в 7. Такой процесс не дает вклада в явления переноса (теплопроводность, вязкость), однако обеспечивает установление энергетического равновесия для фононов с заданным направлением импульса. Это позволяет для описания фононов пользоваться равновесными функциями, характеризуя фононы, движущиеся в каждом данном направлении, своей температурой.  [c.115]

Теймор измерил также дрейфовую скорость экситонов в поле градиента напряжений, освещая входную поверхность импульсом излучения и определяя временную задержку, с которой экситоны достигают данной области кристалла. Он получил предсказанную теоретически линейную зависимость скорости дрейфа от внешней силы и таким образом определил время рассеяния в температу рном интервале от 1,5 до 20 К. Результаты его измерений приведены на рис. З, е. Время рассеяния в этом температурном интервале ме няется почти на два порядка. Найденная экспериментально температурная зависимость вида согласуется с теоретическим предсказанием для рассеяния носителей на фононах. Этот фундаментальный процесс оказалось возможным наблюдать благодаря чрезвычайно высокой чистоте кристалла. В силу малой массы носителей и относительно большого времени релаксации при низких температурах (для сравнения укажем, что время релаксации электронов в меди при Г, == 300, К равно с) экситоны в сверхчистом  [c.136]

Есть егце одна причина, по которойге Тр. При низких температурах, когда фононы "вымораживаются" (то есть их вклад в рассеяние становится малым), рассеяние импульса часто определяется рассеянием на примесях. Это значит, что результируюгцее время рассеяния имнульса (то есть время рассеяния и на нримесях и на фононах) становится гораздо меньгпе времени рассеяния имнульса на фононах, которое, в  [c.61]

В случае высоких температур (Т Псло) наиболее вероятно испускание и поглощение фононов с большими энергиями порядка Йсоо. Но поэтому из формулы (6.85) получаем, что концентрация фононов (ПфУ Т/ Нао). Как показано в квантовой теории твердого тела (см., например, кн. Абрикосов А. А. Введение в теорию нормальных металлов. М., 1972), взаимодействие фононов с электронами описывается матричным элементом гамильтониана взаимодействия, зависящим от импульса рассеяния, и полная вероятность W рассеяния с испусканием (или, аналогично, с поглощением фонона) оказывается пропорциональной Г/й.. Отсюда время релаксации т 1/WП/Т. Это соотношение определяет и <Яэл>. Следовательно, /Сэл=соп81, т. е. теплопроводность не зависит от температуры.  [c.196]

Сокращение длительности возбуждающих и зондирующих импульсов, переход к фемтосекундному масштабу времени позволяет распространить технику КАРС-спектрохронографии на исследование элект-рон-фононной релаксации в условиях сильного оптического возбуждения полупроводника. Первые результаты в этой области получены пока с помощью спектрохронографии спонтанного КР в уникальных экспериментах Кэша и соавторов [60], где прослежена динамика спектров КР в течение пяти первых пикосекунд после оптического возбуждения. Измеренное в [60] время электрон-фононного рассеяния составило 165 фемтосекунд.  [c.152]

Исследования Ф. (фононного газа) можно производить прямыми или косвенными методами. Последние связаны с измерениями тепловых свойств вещества, а также с исследованием рассеяния частиц (нейтронов, фотонов) на тепловых Ф. Прямые методы — это акустич. эксперименты (напр., измерения скорости и поглощения звука) на гиперзвуковых частотах. Свойства Ф. изучают также в экспериментах по распространению тепловых импульсов (импульсов Ф.), проводимых при сверхнизких темп-рах. Исследования тепловых импульсов позволяют определить скорость тепловых Ф., их рассеяние и времена релаксации в кристаллах. Тепловые импульсы создаются путём разогревания плёночных проводников 2 (рис. 2) короткими импульсами тока, СВЧ импульсами или лазерными импульсами. Прошедшие через исследуемый кристалл (напр., А12О3) тепловые Ф. регистрируются сверхпроводящими плёночными болометрами 4.  [c.372]



Смотреть страницы где упоминается термин Время рассеяния импульса на фононах : [c.201]    [c.168]    [c.404]    [c.89]    [c.48]    [c.47]   
Смотреть главы в:

Электронные свойства твердых тел  -> Время рассеяния импульса на фононах



ПОИСК



Газ фононный

Газ фононов

Импульса рассеяние

Фононы 1-фононные

Фононы 2-фонониые



© 2025 Mash-xxl.info Реклама на сайте