Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные элементы теории тонких оболочек

В учебном пособии изложены основные положения курса теории упругости и элементы теории пластичности, приведены примеры решения плоской задачи в прямоугольных и полярных координатах, дан расчет толстостенных труб при внешнем и внутреннем давлении и при насадке, расчет вращающихся дисков, тонких прямоугольных и круглых плит, цилиндрических оболочек, стержней при кручении. Приведены задачи термоупругости и пластичности.  [c.2]


В учебнике излагаются теория напряжений в деформаций, основные соотношения, принципы и теоремы теории упругости, постановка и методы решения задач теории упругости, плоская задача теории упругости в декартовых и полярных координатах, теория изгиба и устойчивости тонких пластин (прямоугольных и круглых в плане), приближенные методы решения задач теории упругости (вариационные методы, метод сеток, метод конечных элементов), основы теории тонких упругих (безмоментных и пологих) оболочек, основы теории пластичности. Большое внимание уделено приложениям, ра-вобрано большое количество задач. В конце каждой главы приведены вопросы для самопроверки в задачи для тренировки, к части из которых даны решения.  [c.2]

Перемещения и деформации в тонких оболочках. Оболочкой называют тело, ограниченное двумя поверхностями, расстояние между которыми мало по сравнению с основными размерами тела. В классической теории оболочек справедливы гипотезы Кирхгофа — Лява, состоящие в следующем нормальный элемент к недеформирован-ной срединной поверхности оболочки остается прямолинейным и нормальным к деформированной срединной поверхности и не изменяет своей длины нормальные напряжения dgg пренебрежимо малы. Энергетическая погрешность гипотез Кирхгофа — Лява в случае оболочек равна rf = max hjR], где R — минимальный радиус кривизны оболочки.  [c.160]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]


Как известно, на устойчивость тонких оболочек и их закрити-ческое поведение решающее влияние оказывают начальные неправильности геометрической формы и несовершенство способов закрепления. Начальные неправильности тонкостенных конструкций обусловлены в основном технологическими причинами и имеют, как правило, случайный характер. В общем случае отклонения от идеальной формы представляют собой пространственные случайные поля. Функции, характеризующие поведение конструкций при нагружении, также являются случайными. Таким образом, при изучении потери устойчивости и закритического деформирования тонкостенных конструкций необходима стохастическая постановка задач. При этом в исходных уравнениях должны учитываться геометрические нелинейности тонкостенных элементов, приобретающие существенное значение после потери устойчивости. Рассмотрим в качестве примера задачу о закритических деформациях неидеальной сферической оболочки при всестороннем равномерном сжатии. Для описания деформированной поверхности воспользуемся нелинейными уравнениями теории оболочек типа Маргерра—Власова  [c.197]

Настоящая монография посвящена изложению особенностей применения МКЭ к расчету тонких оболочек. Описываются все известные в настоящее время подходы к построению конечных элементов тонких пологих и непологих оболочек на основе различных вариа -ционных формулировок (функционалы Лагранжа, Кастильяно, Рейссне-ра, Ху-Ваиицу, смешанные и гибридные постановки) и разрешающих уравнений либо теории оболочек (с учетом гипотез Кирхгофа-Лява или с учетом деформаций поперечных сдвигов), либо теории упру -гости. Основное внимание уделяется проблеме удовлетворения требований, гарантирующих быструю сходимость. Приводятся различные способы улучшения свойств элементов с анализом возможности распространения этих приемов с одних типов элементов на другие. Имеется обширная библиография.  [c.2]

Основной предпосылкой для построения теории тонких анизотропных слоистых оболочек вращения остается известная гипотеза недефор-мируемых нормалей, которая формулируется обычным образом нормальный к координатной поверхности прямолинейный элемент оболочки после деформации остается прямолинейным, нормальным к деформированной координатной поверхности оболочки и сохраняет свою длину. Обычно к этому геометрическому предположению присоединяется еще следующее статическое предположение, которое гласит, что нормальными напряжениями на площадках, параллельных координатной поверхности тонкой оболочки, можно пренебречь по сравнению с другими напряжениями.  [c.152]


Смотреть страницы где упоминается термин Основные элементы теории тонких оболочек : [c.188]   
Смотреть главы в:

Взаимодействие упругих конструкций с жидкостью удар и погружение  -> Основные элементы теории тонких оболочек



ПОИСК



Оболочки Теория — См. Теория оболочек

Оболочки тонкие

Основные соотношения теории тонких оболочек ш общие принципы построения матрицы жесткости элемента

Теория оболочек

Теория оболочек (тонких)



© 2025 Mash-xxl.info Реклама на сайте