Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные параметры состояния газа и их измерение

КОЛИЧЕСТВО ВЕЩЕСТВА. ОСНОВНЫЕ ПАРАМЕТРЫ СОСТОЯНИЯ ГАЗА И ЕДИНИЦЫ ИЗМЕРЕНИЯ ИХ  [c.19]

ОСНОВНЫЕ ПАРАМЕТРЫ СОСТОЯНИЯ ГАЗОВ И ЕДИНИЦЫ ИХ ИЗМЕРЕНИЯ  [c.7]

ОСНОВНЫЕ ПАРАМЕТРЫ СОСТОЯНИЯ ГАЗА И ИХ ИЗМЕРЕНИЕ  [c.16]

Как уже было сказано, состояние тела характеризуется тремя основными параметрами давлением р, удельным объемом v и температурой Т. Основные параметры определяются путем непосредственного измерения. Целесообразно найти связь между основными параметрами, т. е. функцию вида F [р, v, Т)=0, которую называют уравнением состояния. Относительно просто найти такую функцию для идеального газа.  [c.9]


Для измерения нагретости или температуры тела пользуются каким-нибудь из явлений, происходящим стелами при сообщении им теплоты, например, явлением расширения тел при нагревании. На этом основано применение газовых и жидкостных термометров. Величины р, t) и Т называются основными параметрами газа (пара). Двумя из этих величин (параметров) для газов и перегретых паров вполне определяется третья величина. Соотношение между тремя указанными параметрами называется уравнением состояния газа. Ниже мы познакомимся с другими параметрами, определяющими состояние рабочего тела.  [c.14]

Поскольку в общем случае внутренняя энергия газа является функцией двух основных параметров, а каждому состоянию соответствует вполне определенное их значение, то, следовательно, для каждого состояния газа будет характерна своя однозначная, вполне определенная величина внутренней энергии и, т. е., иначе говоря, и — это также функция состояния газа, и разность внутренних энергий для двух каких-либо состояний рабочего тела или системы тел не будет зависеть от того, каким путем это рабочее тело или система тел будет переходить из первого состояния во второе. Математически разность внутренних энергий для двух состояний рабочего тела записывается так — /] = Аи, где Аи обычно называют изменением внутренней энергии, единица измерения которой, отнесенная к 1 кг газа, будет Дж/кг.  [c.22]

В физике плазмы рентгеновская спектроскопия применяется для диагностики источников двух типов с большим размером плазменного объема 0,1—1,0 м (например, токамаков) и источников малого размера 0,1—1,0 мм (лазерной плазмы, плазменного фокуса, вакуумной искры). Температура этих источников одного порядка — от единиц до нескольких десятков миллионов градусов, и основная часть линейчатого и непрерывного излучения приходится на мягкий рентгеновский диапазон от нескольких сотен электронвольт до нескольких килоэлектронвольт. В термоядерных установках проводятся исследования Н, Не, Ы, Ве — подобных ионов легких (О, С, Н) и тяжелых (Т1, N1, Ре) элементов, по которым определяются электронная и ионная температуры, ионный состав и состояние равновесия, а также исследуются макроскопические процессы и кинетика плазмы. Исследуемые линии принадлежат ионам примесей, поступающих в плазменный объем из стенок или остаточного газа, поэтому их интенсивность по сравнению с континуумом относительно невелика. Для разделения линий ионов различных элементов и кратностей необходимо разрешение порядка (1 — 3). 10 в отдельных, относительно узких, участках спектра. По изменению интенсивностей линий ионов различных кратностей можно судить об изменениях температуры, плотности и ионного состава плазмы по объему. Для таких измерений спектральная аппаратура должна иметь пространственное разрешение порядка 1 см для токамаков и 1 мкм для лазерной плазмы. Горячая плазма существует непродолжительное время (характерное время изменения параметров плазмы токамаков порядка 1 мс, лазерной плазмы — 10 нс), поэтому приборы должны обладать достаточно большой апертурой и многоканальной системой детектирования. Поскольку большинство координатно-чувствительных детекторов высокого разрешения имеют плоскую чувствительную поверхность, фокальная поверхность спектрометра тоже должна быть плоской, и угол падения излучения к ней должен по возможности быть небольшим.  [c.286]


Теперь число параметров, определяющих состояние идеального газа, /г = 4, а количество основных единиц измерения к = 3, следовательно, п — к = i — 3 = 1. Определим эту безразмерную величину. Уменьшим единицы измерения первичных величин длины — в Ь раз, массы — в М раз, времени — в Г раз. Тогда численное значение р в новых единицах увеличивается в М раз, V — в  [c.186]

Приборы для контроля второстепенных параметров, не требующие постоянного наблюдения или регистрации, размещаются на других щитах, установленных в машинном зале. Так, основные приборы для измерения давления масла в системе регулирования и смазки расположены на лицевой панели блок-шкафа регулирования, непосредственно у мест отбора импульсов. Вблизи мест отбора импульсов (на стене, разделяющей машинный зал и галерею нагнетателей) расположены и щиты с приборами для контроля параметров нагнетателя, и манометры реле осевого сдвига. Схема управления позволяет также автоматически управлять агрегатом из главной щитовой (ГЩУ) компрессорного цеха, где предусмотрен щит из однотипных агрегатных панелей. Функции управления, осуществляемые с агрегатной панели ГЩУ, ограничиваются операциями автоматического пуска, нормальной и аварийной остановки и управления режимом работы агрегата путем воздействия на задатчик регулятора скорости. В соответствии с этими функциями объем информации, поступающей на агрегатную панель, ограничен сигнализацией о состоянии агрегата ( Готов к пуску , Агрегат в работе и т. д.) и обобщенными (без расшифровки) предупреждающим и аварийным сигналами. Информация о состоянии отдельных узлов агрегата сохранена только для кранов технологической обвязки нагнетателя и для задатчика регулятора скорости. Установленные на агрегатной панели в ГЩУ контрольно-измерительные приборы позволяют измерять пять наиболее важных параметров, характеризующих режим ГТУ температуру газа перед ТВД, частоту вращения ТВД и ТНД и давление транспортируемого газа до и после нагнетателя. По мере накопления опыта эксплуатации газоперекачивающих агрегатов возрастало доверие к системе автоматики, в первую очередь к системе защиты, доказавшей свою достаточно  [c.127]

Кроме измерений перечисленных основных параметров и прочих характеристик, по к-рым даются договорные гарантии (расходы смазьи, охлаждающей воды), при испытаниях двигателей проводятся измерения ряда величин, характеризующих как состояние внешних условий (темп-ра воздуха и барометрич. давление), так и условий испытаний. Сюда относятся темп-ры выхлопных газов и охлаждающей воды и масла в различных пунктах системы охлаждения и смазки давления воды, смазки, воздуха, при пневматич. распыливании топлива индикаторная мощность вспомогательных механизмов (продувочные насосы 2-такт-ных двигателей). Значения этих дополнительных параметров необходимы потому, что как атмосферные условия, так и тепловой режим влияют на экономичность двигателя. Кроме того знание темп-р выхлопа, входа и вы юда охлаждающей воды обязательно при подсчетах теплового баланса.  [c.203]

В зависимости от того, в каком состоянии находится исследуемое вещество (газ, пар или жидкость), а также от того, при каких параметрах производится измерение, проектируются различные типы калориметров. При этом различия в конструкциях калориметров в конечном счете определяются тем, каким образом решаются основные вопросы калори метрирования, изложенные в предыдущем разделе. В случае измерения теплоем1Кости жидкости при атмосферном давлении наилучшим калориметром является обычный непроточный калориметр, разобранный в предыдущем разделе. Если температура, при которой производится измерение (например, теплоемкости Ср) выше, чем комнатная, то весь калориметр помещается в термостат (жидкостный или массивный  [c.209]

Кроме того, за последние несколько лет была значительно усо вершенствована экспериментальная техника и накоплено много важных экспериментальных данных, что также обогатило интересующую нас область новыми фактами. Исследование критических явлений сопряжено со значительными трудностями. Для проблемы перехода газ — жидкость основной метод состоит в точном измерении давления, плотности и температуры (получение уравнения состояния), а также удельной теплоемкости. Оказывается, что поведение типа степенного закона, позволяющее определить критические показатели, имеет место лишь очень близко от критической точки, скажем при 0 < 10" . Даже определение критических параметров Т , Ро с с точностью, удовлетворяющей потребностям эксперимента, сопряжено с чрезвычайно большими трудностями. Поэтому требуется очень точное определение температуры (погрешность АТ/Тс не выше 10" ). Кроме того, благодаря большой теплоемкости су теоретически расходится) время установления равновесия в системе очень велико (порядка дней). Большое значение сжимаемости также создает серьезные проблемы влияние гравитации на систему становится очень сильным, она создает градиент плотности, который должен быть очень точно учтен. Весьма важные для магнитных систем экспериментальные измерения намагниченности и восприимчивости и проведение экспериментов по рассеянию нейтронов также сопряжены с весьма существенными трудностями их преодоление требует большого искусства и тщательности. Мы не можем вдаваться здесь в подробности и рекомендуем читателю обратиться к оригинальным работам и обзорам.  [c.357]


Одним из основных вопросов, на который следует ответить, является вопрос о состоянии плазмы за фронтом свечения. Измерения, проведенные с фоторазверткой и ФЗУ, показывают, что за фронтом свечения движется ярко светящаяся область, форма которой зависит от начального давления и скорости фронта. Необходимо выяснить, является ли плазма за фронтом газоразрядной (выброшенной из камеры при разряде), определяются ли ее параметры ударной волной или ее состояние зависит от обоих процессов. Поскольку электронная температура за сильными ударными волнами порядка температуры газа, то спектральные измерения позволяют, по-видимому, ответить на этот вопрос. Чтобы исключить возможное влияние на электронную температуру за фронтом электрических полей разряда, измерения проводились на таких расстояниях от кольцевого электрода, чтобы к моменту прихода фронта свечения разрядный ток существенно затухал.  [c.55]


Смотреть главы в:

Теоретические основы теплотехники Издание 4  -> Основные параметры состояния газа и их измерение



ПОИСК



123 — Основные параметры параметры

Количество вещества. Основные параметры состояния газа и единицы измерения их

Основное состояние

Основные газы

Основные параметры состояния газа

Основные параметры состояния газов и единицы их измерения

Параметр основной

Параметры состояния

Параметры состояния газа

Параметры состояния основные

Состояние, измерение

Состояния основные



© 2025 Mash-xxl.info Реклама на сайте