Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решение задачи о кручении в напряжениях. Аналогия Прандтля

Заметим, что аналогичные дифференциальное уравнение и краевое условие (29.8) справедливы для прогиба мембраны, натянутой на жестком контуре, под действием равномерного давления. Эта аналогия, подмеченная Прандтлем, позволяет находить экспериментальное решение задачи кручения при помощи мыльной или какой-либо иной пленки в тех случаях, когда математическое решение уравнения Пуассона (29.10) для данного контура затруднительно. Так как функция напряжений содержит ш множителем, то отношения не зависят от (в, следовательно, главные направления в каждой точке фиксированы.  [c.122]


Решение задачи о кручении в напряжениях. Аналогия Прандтля  [c.230]

Рис. 11.29. К построению приближенного решения (с использованием аналогии Прандтля) задачи о свободном кручении призмы прямоугольного поперечного сечения с большим отношением сторон а) поперечное сечение призмы б) горизонтали мембраны, натянутой на контур, совпадающей с контуром поперечного сечения призмы (точная картина) в) то же (приближенная картина) г) поперечное сечение мембраны д) эпюра касательного напряжения на линии, параллельной короткой стороне поперечного сечения е) эпюра касательных напряжений по линиям, параллельным короткой и длинной сторонам прямоугольного поперечного сечения скручиваемой призмы, Рис. 11.29. К построению приближенного решения (с использованием <a href="/info/20317">аналогии Прандтля</a>) задачи о <a href="/info/261118">свободном кручении</a> призмы <a href="/info/195791">прямоугольного поперечного сечения</a> с большим отношением сторон а) <a href="/info/7024">поперечное сечение</a> призмы б) горизонтали мембраны, натянутой на контур, совпадающей с контуром <a href="/info/7024">поперечного сечения</a> призмы (точная картина) в) то же (приближенная картина) г) <a href="/info/7024">поперечное сечение</a> мембраны д) эпюра <a href="/info/5965">касательного напряжения</a> на линии, параллельной короткой стороне <a href="/info/7024">поперечного сечения</a> е) эпюра <a href="/info/5965">касательных напряжений</a> по линиям, параллельным короткой и длинной сторонам <a href="/info/195791">прямоугольного поперечного сечения</a> скручиваемой призмы,
А. Сен-Венан и М. Леви, сформулировав основы теории идеальной пластичности, не дали решения каких-либо двумерных задач. Затем последовал почти сорокалетний перерыв в разработке этой проблемы- Возникший вновь в начале XX в. интерес к теории пластичности был поддержан тем, что Л. Прандтль и А. Надаи нашли в начале 20-х годов решения нескольких важных задач, а Г. Генки исследовал свойства линий скольжения при плоской деформации. Надаи рассмотрел задачи кручения жестко-пластических и упруго-пластических стержней. Помимо аналитического решения, он воспользовался интересной физической аналогией. Согласно ей, поверхность, описываемая функцией напряжений, аналогична поверхности кучи песка, насыпанной на сечение скручиваемого стержня, причем угол внутреннего трения песка пропорционален напряжению текучести. Если это сочетать с аналогией с мыльной пленкой для функции напряжений при кручении упругого стержня, принадлежащей Прандтлю, то задача об упруго-пластическом кручении иллюстрируется при помощи модели пленки, раздуваемой под крышей , образуемой поверхностью кучи песка.  [c.266]

Для получения приближенных решений задач о кручении можно использовать и различные аналогии в теории кручения. Суш ность этих аналогий заключается в том, что основное уравнение теории кручения (уравнение для функции напряжений гр или уравнение для функции кручения ф) совпадает, с точностью до постоянных коэффициентов, с уравнениями для других задач механики и физики, которые легче решить, полностью или частично применяя эксперимент. Наиболее важной остается аналогия Прандтля (мембранная аналогия). Этими замечаниями мы и ограничимся, сославшись на книгу по кручению Н. X. Арутюняна и Б. Л. Абрамяна [4], где вопрос об аналогиях разобран достаточно подробно и где дана литература.  [c.287]


Рассматривается развитие метода малого параметра применительно к упруго-пластическим задачам теории идеальной пластичности. В настоящее время имеется сравнительно небольшое число точных и приближенных решений упруго-пластических задач теории идеальной пластичности, поскольку возникаюш,ие здесь математические трудности весьма велики. Впервые задачу о распространении пластической области от выреза, вызываюш,его концентрацию напряжений в сечении скручиваемого стержня, решил Треффтц [1]. Он рассматривал уголковый контур и при решении задачи использовал метод конформного отображения. Несколько ранее Надаи [2] была предложена песчаная аналогия, позволившая в соединении с мембранной аналогией Прандтля осуш ествить моделирование задач упруго-пластического кручения стержней. В. В. Соколовский [3] рассмотрел задачу об упруго-пластическом кручении стержня овального сечения ряд решений задач о кручении стержней полигонального сечения был дан Л. А. Галиным [4, 5]. Большая литература посвящена одномерным упруго-пластическим задачам отметим работы [2, 3, 6-8]. Точное решение неодномерной задачи о двуосном растяжении толстой пластины с круговым отверстием было дано Л. А. Галиным [9], использовавшим то обстоятельство, что функция напряжений в пластической области является бигармониче-ской. Там же Л. А. Галин рассмотрел случай более общих условий на бесконечности. Впоследствии Г. Н. Савин и О. С. Парасюк [10-12 рассмотрели некоторые другие задачи об образовании пластических областей вокруг круглых отверстий.  [c.189]


Смотреть страницы где упоминается термин Решение задачи о кручении в напряжениях. Аналогия Прандтля : [c.118]    [c.73]    [c.182]   
Смотреть главы в:

Теория упругости Изд4  -> Решение задачи о кручении в напряжениях. Аналогия Прандтля



ПОИСК



Аналог

Аналогия

Аналогия Прандтля

Аналогия для кручения

Задача Прандтля

Задача в напряжениях

Напряжение в кручении

Прандтль

Прандтля

Решение Прандтля



© 2025 Mash-xxl.info Реклама на сайте