Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Распределение коэффициента трения по обтекаемой поверхности

Рис. 10-7. Распределение коэффициента Трения по длине обтекаемой поверхности. Рис. 10-7. <a href="/info/105659">Распределение коэффициента</a> Трения по длине обтекаемой поверхности.

В связи с эти.м приобретают большое значение приближенные методы решения задач пограничного слоя, среди которых распространенными являются методы, основанные на использовании уравнений пограничного слоя в интегральной форме. К таким уравнениям относятся уравнение количества движения, уравнение кинетической энергии, уравнение энергии. Приближенность этих методов заключается в отказе от удовлетворения дифференциальных уравнений пограничного слоя для каждой отдельной частицы жидкости. Уравнения пограничного слоя удовлетворяются только в среднем по толщине пограничного слоя ери выполнении граничных условий и контурных связей на стенке и при переходе к внешнему потоку. С точки зрения инженерной практики такой подход оправдывается тем, что часто прп проектировании различных технических устройств нет необходимости в детальном знании профилей скорости и температуры достаточно иметь данные о распределении коэффициентов трения и теплообмена по обтекаемой поверхности или о распределении толщины пограничного слоя и интегральных его характеристик.  [c.52]

По уравнению (7-41) или по графику а рис. 7-5 определяется распределение формпараметра по продольной координате. Наконец, определяется распределение локальных значений коэффициента трения по поверхности обтекаемого тела.  [c.244]

Одним из наиболее широко развитых научных направлений механики жидкости (газа) является аэродинамика пограничного слоя, изучающая движение вязкой жидкости в ограниченной области вблизи обтекаемых поверхностей. Решение задач о движении жидкости в пограничном слое дает возможность найти распределение касательных напряжений (местных и средних коэффициентов трения) и, следовательно, суммарные аэродинамические силы и моменты, обусловленные вязкостью среды, а также рассчитать теплопередачу между поверхностью летательного аппарата и обтекающим его газом. При небольших скоростях полета не обязательно учитывать тепловые процессы в пограничном слое из-за малой их интенсивности. Однако при больших скоростях необходимо учитывать теплопередачу и влияние на трение высоких температур пограничного слоя.  [c.669]

В дозвуковом потоке сила сопротивления складывается из двух составляющих силы трения по поверхности и результирующей сил давления. Суммарная сила давления не равна нулю, как в идеальной жидкости, так как пограничный слой искажает основной поток и изменяет распределение давления. Следует подчеркнуть, что в конечном счете эти силы сопротивления вызваны влиянием вязкости жидкости. Хорошо обтекаемым называется тело, для которого сопротивление трения много больше сопротивления давления (пластина, параллельная потоку, крыло с малым углом атаки). Для плохо обтекаемого тела (шар, цилиндр) основным является сопротивление давления (или, как иногда называют, сопротивление формы). На рис. 7.8 для наглядности показаны профиль крыла и цилиндр, имеющие одинаковый коэффициент сопротивления. Этот рисунок показывает, насколько велико может быть сопротивление давления для плохо обтекаемого тела по сравнению с сопротивлением трения хорошо обтекаемого тела.  [c.184]


В табл. 6-1 приведены данные по распределению скорости и энтальпии торможения в пограничном слое, а также по трению и теплообмену при р = 0,286 и 0,4 (ускоренное движение газа) в случаях 7 /Гю=0 0,6 и 1,0. Видно, что в рассматриваемых условиях с усилением охлаждения обтекаемой поверхности уменьшается коэффициент трения, что объясняется уменьшением и ди ду)п, а следовательно, и / "(0) с понижением температуры поверхности по сравнению с температурой торможения внешнего потока. Рост градиента давления внешнего потока вызывает большее заполнение профилей скорости и температуры торможения в пограничном слое.  [c.198]

Таким образом, для определения локальных значений коэффициента трения в рассматриваемом методе необходимо иметь распределение скорости внешнего потока вдоль обтекаемой поверхности и начальные параметры х , бн, 0н, D,y uiH- По графику на рис. 12-12 определяется значение 2 + G для вычисления ио уравнению  [c.427]

При заданных распределении скорости внешнего потока вдоль поверхности обтекаемого тела 1(х) и числе Рейнольдса набегающего потока Woo//v вычисляются коэффициент трения при обтекании турбулентным потоком плоской пластины с соответствующим значением числа Рейнольдса и постоянная интегрирования С 1 по уравнению (12-68) при п = 6. Коэффициент трения для турбулентного пограничного слоя на плоской пластине  [c.434]

Отрывы потока при вдуве через поверхность [67]. Хорошо известно, что вдув и отсос газа через поверхность обтекаемого тела могут сильно влиять на картину течения. Например, в рассмотренном случае падения косого скачка уплотнения на ламинарный пограничный слой размеры зоны возвратных течений могут существенно изменяться, если в зоне взаимодействия производить отсос. Для моделирования этой ситуации на участке поверхности пластины, ограниченном значениями координаты х = 0,8725 и ДГ = 1,0625, фиксировалось значение вертикальной составляющей скорости иу. Распределения давления и коэффициента трения для значений ьу = -0,001 и VI = -0,003 представлены кривыми 2 и 5 на рис, 2.14д, б (кривые 1 соответствуют и, = 0). Как видно из графиков, размеры отрывной зоны при иу = -0,001 заметно меньше, чем без отсоса, а при и,- = -0,003 течение вовсе становится безотрывным.  [c.165]

По найденным полям газодинамических переменных вычислялись локальные аэродинамические характеристики цилиндра коэффициенты давления = (p-pj)lq и сопротивления трения ty= xjq , где -скоростной напор невозмущенного потока, Х - напряжение трения. По распределениям су определялось положение точки отрыва xs потока на обтекаемой поверхности тела положение точки присоединения А> потока на оси следа устанавливалось по распределению продольного компонента скорости.  [c.138]

Понять особенности развития течения в окрестности обтекаемой поверхности помогают распределения окружной и радиальной компонент коэффициента сопротивления трения в поперечном сечении тела, при этом для выделения влияния числа Рейнольдса  [c.130]

При заданных распределении скорости по обтекаемой поверхности Ui(x), изменении радиуса канала г х), а также начальных значениях ён, оо и уравнение (12-83) позволяет определить распределение толщнны пограничного слоя по обтекаемой поверхности, используя которое, легко рассчитать по уравнению (12-80) изменение локальных значений коэффициента трения по продольной координате.  [c.437]

Для определения локальных значений коэффициента трения на поверхности пористой стенки широко используется интегральное уравнение количества движения. По измеренным распределениям скорости и температуры в различных сечениях пограничного слоя над пористой поверхностью, а также температуре основного потока газа, массовым расходам, горячего газа и охладителя определяются соответствующие значения толщины потери импульса. По графикам, выражающим изменение толщины потери импульса, скорости, температуры и плотности газа внешнего потока, а также температуры стенки по обтекаемой поверхности, определяются производные указанных величин по продольной координате, а затем по интегральному уравнению количества движения вычисляются локальные значения коэффициента трения при различных относительных расходах подаваемых охладителей. При таком методе определения коэффициентов трения приходится пользоваться графическим дифференцированиел исходных опытных 516  [c.516]


На рис. 9-23 показано сравнение экспериментальных значений Н и о с расчетными, а также изменение по обтекаемой поверхности расчетных значений С) (в опытах коэффициент трения не измерялся) при М оа — 3. Конечное число Маха составляло 1,9 поток замедлялся па протяжении 10 толщин пограничного слоя. Входящий в интегральные уравнения градиент давления определялся по измеренному распределению давления по длине стенки. Расчет дает удовлетворительное согласование с опытом для большей части области сверхзвукового течения расхождение наблюдается вниз по течению к концу криволинейной поверхности, что, по-впдимому, является результатом действия поперечных градиентов давления, возникающих под влиянием сильного изменения скорости сверхзвукового потока. Доказательством надежности рассматриваемого расчетного метода является и тот факт, что в полном соответствии с данными измерений расчет показывает отсутствие отрыва пограничного слоя. С другой стороны, предложенные в [Л. 162, 197, 232] методы расчета показывают, что в этих условиях течения должен наступить отрыв пограничного слоя или по крайней мере предотрывное состояние.  [c.259]

Для определения профилей скорости по уравнению 0,5 (12-44), а также локальных коэффициентов трения по уравнению (12-47) необходимо располагать данными по распределению скорости Up(e) вдоль обтекаемой поверхности. На рис. 12-20 показана зависимость Ue Q) U от D по онытны.м данным различных исследователей.  [c.427]


Смотреть страницы где упоминается термин Распределение коэффициента трения по обтекаемой поверхности : [c.354]    [c.364]   
Смотреть главы в:

Тепломассообмен и трение при градиентном течении жидкостей  -> Распределение коэффициента трения по обтекаемой поверхности



ПОИСК



Коэффициент обтекаемости

Коэффициент поверхности

Коэффициент распределения

Коэффициент трения

Н распределенные по поверхности

Трение поверхностей

Тренне коэффициент



© 2025 Mash-xxl.info Реклама на сайте