Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлокерамические Физические свойства

В замкнутом тормозе часть поверхности трения тормозного шкива соприкасается с фрикционной накладкой. В этом случае тепловой поток разделяется на две части, одна из которых расходуется на нагрев шкива, а другая — на нагрев накладки. Соотношение частей общего теплового потока определяется физическими свойствами трущихся тел. Совершенно очевидно, что если теплопроводность фрикционного материала будет высокой, то тепловой поток, проходящий через него, будет также велик, и нагрев тормозного шкива уменьшится. Анализ распределения теплового потока между двумя трущимися телами показывает, что при работе с фрикционным материалом на асбестовой основе (вальцованная лента, асбестовая тканая лента) только незначительная часть (3—4%) теплового потока расходуется на нагрев тормозной накладки, основная же часть его (96—97%) проходит через металлический тормозной шкив. При использовании фрикционных материалов металлокерамического типа (на медной или железной основе) через тормозную накладку проходит значительно большая часть теплового потока, а часть его, проходящая через тормозной шкив, снижается соответственно до 62% (при стальном шкиве) и до 79% (при чугунном шкиве). Таким образом, характер распространения тепла в фрикционной накладке определяет собой условие на границе исследуемого тела (шкива). Это условие также выражается уравнением Фурье  [c.605]


Методами металлокерамической технологии создаются многие современные материалы с особыми физическими свойствами — магнитострикционные материалы, сегнетоэлектрики (ГОСТ 22265—76), пьезокерамические материалы (ГОСТ 13927-74 ), контакты (ГОСТ 13333-75 ) и др.  [c.210]

В табл. 64 приведены физические свойства металлокерамических твердых сплавов.  [c.99]

Марки и физические свойства металлокерамических контактов приведены в табл. 1.52 [1,8].  [c.53]

Магний технический — Физические свойства 271 Магнитные анализаторы 63 Магнитные металлокерамические материалы 280 Магнитный анализ 61 Манганин 249  [c.1054]

При изготовлении спеченных легированных сталей из зерен легированного порошка металлокерамическая сталь обладает одинаковыми физическими свойствами с литой. Установлено, что стали, полученные горячим прессованием композиции порошков железа и легирующих элементов, обладают такими же свойст-  [c.143]

Значение критической температуры зависит не только от давления и сорта масла, но и от физических свойств фрикционных материалов. Так, для металлокерамических фрикционных материалов, обладающих пористой структурой, способствующей удержанию масла на поверхности трения, значение критической температуры будет выше, чем для стальных дисков. Для образования устойчивой масляной пленки количество масла, подводимого к поверхностям трения, не должно быть меньше 0,07— 0,08 см см -с. Однако в целях улучшения теплоотвода следует это количество масла увеличивать до 0,11—0,13 см см -с.  [c.334]

К пластическим материалам относят конструкционные высокоотпущенные стали с удлинением при разрыве не менее 15%. К хрупким и малопластичным материалам можно отнести чугун, некоторые легированные и инструментальные стали работающие при низких температурах металлокерамические материалы. Пластичность (или хрупкость) материалов не является их постоянным свойством и зависит от физических условий, в которых происходит деформация. Так, например, серый чугун считается вообще не пластичным металлом, однако при всестороннем сжатии становится пластичным. И, наоборот, пластичные стали под действием низких температур могут быть непластичными — хрупкими.  [c.19]

Идеализированная модель материала, принятая в механике сплошных сред, естественно, не отражает многих особенностей строения реальных тeJ . Поэтому результаты теоретических расчетов в большей или меньшей степени не совпадают с экспериментальными данными. Больш ие отклонения наблюдаются в том случае, когда для материала характерно наличие макродефектов — включений, пор и т. п,, приводящих к различию физических и механических свойств отдельных частиц. К таким материалам с несовершенной структурой прежде всего относятся большинство горных пород и бетонов, отдельные металлокерамические композиции и чугуны, некоторые термореактивные пластмассы и др.  [c.134]


Процессы подготовки порошков к прессованию занимают весьма важное место в общей схеме металлокерамического производства. В практике порошковой металлургии металлические порошки чаще всего производят на специализированных заводах, поэтому невозможно учесть все те требования, которые предъявляют к порошкам различные потребители в соответствии с техническими условиями на готовую металлокерамическую продукцию. Почти во всех случаях возникает необходимость в специальных операциях подготовки для придания порошку определенных химических и физических характеристик, обеспечивающих выпуск продукции с нужными конечными свойствами. Даже когда порошки производят непосредственно сами потребители, некоторые дополнительные операции перед прессованием порошков необходимы.  [c.180]

Металлокерамические твердые сплавы изготавливают из порошков металлов прессованием и спеканием при температуре 1350—1550 С. Основная цель спекания — уплотнение и упрочнение спрессованных заготовок изделий, которые после этого должны обладать заданными физическими и механическими свойствами.  [c.34]

Чистые металлы не обладают физическими свойствами, нужными для контактных материалов, а именно твердостью и отсутствием деформаций при высоких температурах, отсутствием прилипания, сваривания, окисляемости и в то же время наличием высокой теплопроводности и электропроводности. Лучшим решением является изготовление металлокерамическим методом композиций, в которых один из компонентов обеспечивает твердость или несвариваемость, а другой — электропроводность.  [c.600]

Наряду с высокими механическими и физическими свойствами у теплостой ких металлокерамических материалов имеется существенный недостаток — отно сительно малая стойкость при резких теплосменах, т. е. тепловые удары. Экспе риментальные работы, проведенные в период 1940—1950 гг., характеризуют ела бую стойкость керамиковых материалов против тепловых ударов (20—25 циклов) В литературе имеются указания о наличии металлокерамических материалов выдерживающих сотни тепловых ударов. Однако каких-либо данных об испыта ниях этих материалов не публикуется.  [c.215]

Жаропрочные металлокерамические материалы, а также различные огнеупорные материалы, предназначенные для работы в качестве элементов современных машин, как известно, изготавливаются часто сразу в виде готовых деталей, требующих небольшой последуюш ей механической обработки. Такие материалы обладают большой неоднородностью физических свойств как по объему, так и в различных образцах одной партии и тем более в разных партиях. Свойства материалов вследствие особенностей их изготовления могут изменяться в зависимости от их геометрии и размеров. При поисковых исследованиях по созданию материалов принципиально новых классов, предназначенных для работы в условиях высоких скоростей газового потока и температур, часто необходимо дать оценку теплофизических характеристик конкретной детали или упрощенных образцов с подобной технологией изготовления. Иногда необходи.мо дать эту оценку при испытаниях деталей непосредственно на испытательных стендах, где изучаются одновременно такие свойства, как эрозия, окисляемость, устойчивость к термическим напряжениям и т. д.  [c.70]

Термическая обработка в воздушной среде — Режимы 448 --деформируемые — Механические свойства 450 — Термическая обработка — Режимы 450 Химический состав 449 --для фасонного литья — Химический состав 442 --литейные — Испытан иена усталость—Чувствительность к надрезу 444 —Механические свойства 443, 444 — Механические свойства при повышенных температурах 445 —Механические свойства при пониженных температурах 446 — Применение 446 —Физические свойства 442 Сплавы медноцинковые — Разрушение сезонное 358 --медн3.е 352—362 — Антифрикционные свойства 358 Сплавы металлокерамические твердые 190—196  [c.551]

Изучение жидкофазного спекания алмазо-металлических и металлокерамических композиций в связи с их реологическими свойствами. И. А. Лавриненко. Физическая химия конденсированных фаз, сверхтвердых материалов и их границ раздела. Наукова думка , К-, 1975, с. 85—94.  [c.226]

Работая с металлокерамическими сплавами, Майерс [й9 определил их физические и механические свонства, представленные в табл. 24. Следует отметить, что прочностные свойства сплава тантала с 5,2% молибдена аналогичны свойствам сплава с 5,2% вольфрама также изучавшегося Майерсом.  [c.733]


К настоящему времени в СССР и за рубежом усилиями многих ученых осуществлены важные исследования явлений хрупкого разрушения твердых тел как в плане решения соответствующих краевых задач механики и создания физически более обоснованных критериев разрушения, так и в области разработок методов оценки склонности конструкционных материалов к хрупкому разрушению (см., например, обзоры в работах [9, 82, 118, 145]). Необходимость в таки исследованиях обуслоЬ-лепа, с одной стороны, тем, что высокопрочные конструкционные материалы (например, жаропрочные сплавы, упрочненные стали, металлокерамические материалы, некоторые пластмассы), как правило, являются хрупкими материалами, т. е. такими, которые уже при нормальных температурах и малых скоростях нагружения разрушаются путем распространения трещины без предварительных пластических деформаций макрообъемов тела. (При низких температурах, повышенных скоростях нагружения, воздействии некоторых поверхностно-активных сред, наводороживании и в других условиях, приводящих к ограничению пластического течения конструкционного материала, его разрушение путем распространения трещины доминирует). С другой стороны, реальные условия эксплуатации конструкции всегда предусматривают наличие некоторой жидкой или газовой среды. Эта среда проникает в деформируемое тело (элемент конструкции) через его структурные несовершенства — дефекты (макро- или микротрещины, границы зерен, включений) и особенно интенсивно взаимодействует с участками тела, деформированными за предел упругости. К таким участкам относятся окрестности резких концентраторов напряжений (трещины, остроконечные полости или жесткие включения и др.). Именно в окрестности подобных дефектов среда, изменяя физико-механические свойства деформируемого материала, в первую очередь его сопротивление зарождению и развитию трещины, оказывает существенное влияние на служебные свойства (несущую способность) рабочего тела в целом.  [c.9]

Пластически деформируемые сплавы. Эти сплавы обладают высокими в отношении механической обработки свойствами. Они хорошо штампуются, режутся ножницами, обрабатываются на всех металлорежущих станках. Из пластически деформируемых сплавов можно изготовить ленты, пластины, листы, проволоку. В отдельных случаях (при изготовлении мелких магнитов сложной конфигурации) целесообразно применение металлокерамической технологии. Марок пластически деформируемых сплавов много, и физические процессы, благодаря которым они имеют высокие магнитные свойства, различны. Наиболее распространены сплавы кунифе (Си-Ы1-Ре) и викаллой (Со-У). Сплавы кунифе анизотропны, намагничиваются в направлении прокатки, часто применяются в виде проволоки малых толщин, а также штамповок. Викаллой применяют для изготовления очень мелких магнитов сложной или ажурной конфигурации и в качестве высокопрочной магнитной ленты или проволоки.  [c.325]


Смотреть страницы где упоминается термин Металлокерамические Физические свойства : [c.546]    [c.191]    [c.215]    [c.392]    [c.373]    [c.92]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.327 , c.333 ]



ПОИСК



Свойства Физические свойства

Свойства металлокерамические

Свойства физические

Физические ПТЭ - Физические свойства

Физические металлокерамические 108, 109 Магнитные свойства 109 — Физические свойства



© 2025 Mash-xxl.info Реклама на сайте