Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные положения Задачи сопротивления материалов

В предыдущих главах изложены основные положения курса сопротивления материалов, составляющие комплекс правил и методов для решения простейших задач прочности в инженерном деле.  [c.660]

Учебное пособие содержит краткое изложение основных положений курса Сопротивление материалов , методические указания, примеры решения типовых задач. Имеется большой выбор задач для самостоятельного решения. В конце книги даны ответы на все задачи. В приложении приводится справочный материал, необходимый для их решения.  [c.2]


Порой приходится слышать, что основное различие между сопротивлением материалов и теорией упругости сводится к точности применяемых методов. С одной стороны,— прикладная дисциплина сопротивление материалов , использующая правдоподобные, но. недоказанные гипотезы и упрощающие приемы. С другой,— строгая математическая наука, теория упругости, отрицающая недоказанные положения и дающая точное решение задач.  [c.8]

В отличие от теоретической механики сопротивление материалов рассматривает задачи, в которых наиболее существенными являются свойства деформируемых тел, а законы движения тела, как жесткого целого, не только отступают на второй план, но в ряде случаен являются попросту несущественными. В то же время вследствие общности основных положений сопротивление материалов можег рассматриваться как раздел механики, который называется механикой деформируемых твердых тел.  [c.9]

Пособие призвано помочь студентам систематизировать значительный объем учебного материала и подготовиться к завершающему экзамену по курсу сопротивления материалов, а также годовому междисциплинарному экзамену в ходе государственной аттестации. Оно включает в себя опорный конспект по курсу, развернутое изложение основных понятий и положений в форме вопросов и ответов, триста задач по основным темам с подробными решениями. В приложении даются необходимые для решения задач данные.  [c.2]

Современная теория механизмов опирается не на правила и приемы, полученные эмпирическим путем наоборот, в настоящее время удалось разработать ее теоретические основы и получить ряд практически пригодных методов, которые опираются главным образом на основные геометрические положения. Для науки о синтезе механизмов естественно искать методы решения задач при помощи геометрии, в противоположность науке о теплоте, теории обтекания, сопротивлению материалов, теории колебаний, в которых используются главным образом дифференциальные уравнения. Графические методы, применяемые для нахождения скоростей и ускорений, а также для определения геометрических мест шарнирных точек и размеров звеньев механизма, оказались очень удобными для конструкторов и способствовали тому, что за последние годы научные методы в области синтеза механизмов получили широкое применение на практике.  [c.11]

Основные положения статики вытекают из теоремы об изменении кинетической энергии системы. Такой прием позволяет, во-первых, исключить из курса ряд элементарных теорем статики, которые получаются в данном случае как следствия, и, во-вторых, получить условия равновесия сил, действующих на абсолютно твердое тело, именно в то время, когда они необходимы студентам для изучения сопротивления материалов. Этого нельзя добиться, если в основу статики положить принцип возможных перемещений, что потребовало бы предварительного рассмотрения таких понятий, как возможные перемещения, идеальные связи, а также свойств идеальных связей. Кроме того, энергетический подход к решению статических задач оправдывается тем, что кинетическая энергия является основополагающим понятием механики, о чем было сказано выше. С методологической точки зрения эту особенность трудно переоценить.  [c.71]


Теоретическая механика, изучающая движение и равновесие материальных тел под действием сил, является научной основой целого ряда современных технических дисциплин. Сопротивление материалов, гидромеханика, теория упругости, динамика самолета, ракетодинамика и другие технические дисциплины существенно дополняют и расширяют основные положения и законы классической механики твердого тела, изучая новые классы задач механики и в ряде случаев вводя в рассмотрение новые физические свойства тел. Уравнения теоретической механики, полученные для абсолютно твердых тел, являются необходимыми, но недостаточными для изучения движения и равнове- сия деформируемых тел.  [c.18]

Такой теплообменник, как нагреватель, трудно рассчитать и, следовательно, сконструировать, поскольку нужно одновременно удовлетворять требованиям для внутренней и наружной поверхностей трубки, а они, как правило, различны. Более того, его конструкция зависит также от выбора источника энергии. Наружная поверхность трубки работает обычно в условиях установившегося течения низкого давления и высокой температуры, из-за чего в материале могут возникнуть достаточно напряженные условия, если при его изготовлении используется, например, углеводород с высоким содержанием серы. На внутреннюю поверхность трубки воздействует существенно нестационарное течение с высоким давлением и высокой температурой. Коэффициенты теплоотдачи на внутренней и наружной поверхностях трубки будут резко отличаться по своей величине, и поэтому требования к площади теплообменной поверхности практически всегда будут различными. Кроме того, имеется еще два ограничения, поскольку отношение внутреннего диаметра к наружному определяется как силовыми, так и тепловыми нагрузками и оптимальное отношение диаметров может не соответствовать требованиям, предъявляемым к площади теплообменной поверхности. К тому же все эти факторы могут противоречить требованиям, предъявляемым к величинам сопротивления трения и мертвого объема. Следовательно, еще до рассмотрения основных теоретических положений нетрудно заметить, что практические возможности и особенности конструкции нагревателя сильно затрудняют задачу исследователя.  [c.248]

Особенностью данного пособия является последовательное изложение задач, которые приходится решать при проектировании механизмов и приборов — выбор схемы, вопросы кинематики и динамики, расчет на прочность, точностной расчет. Книга содержит как общие теоретические основы решения указанных задач, так и конкретные решения их применительно к основным типам механизмов и некоторым приборам. Сведения, относящиеся к основам расчета на прочность, авторы сочли целесообразным выделить в отдельную часть, так как при изложении расчетов деталей механизмов на прочность 1ре-буется знание основных положений сопротивления материалов, а эта дисциплина в учебных планах соответствующих специальностей отсутствует.  [c.3]

В главах 1-7 изложены основы сопротивления материалов расчет прямых стержней при простейших видах напряженно-деформированного состояния и стержневых систем, в том числе, ферм и пружин. Главы 9-14 сборника охватывают основы теории напряженного и деформированного состояний, прочность стержневых систем при сложном напряженном состоянии, безмомент-ные оболочки вращения, продольно-поперечный изгиб и устойчивость стержней, модели динамического нагружения стержневых систем, учет эффектов пластичности и элементы методов расчета на усталость. Кроме того, добавлен материал, касающийся стержней большой кривизны, а также задачи повышенной сложности. Общие теоретические положения вынесены в первый параграф приложения. Основные гипотезы сопротивления материалов сформулированы в виде аксиом, что призвано подчеркнуть феноменологический подход к построению фундамента этой науки как раздела механики деформируемого твердого тела.  [c.6]

В отличие от теоретической мехайики сопротивление материалов рассматривает задачи, в которых наиболее существенными являются свойства твердых деформируемых тел, а законами движения тела как жесткого целого здесь пренебрегают. В то же время, вследствие общности основных положений, сопротивление материалов рассматривается как раздел механики твердых деформируемых тел.  [c.4]


Предлагаемая вниманию советского читателя книга Р. В. Саусвелла Введение в теорию упругости для инженеров и физиков" может служить хорошим дополнением к широко распространенным у нас курсам теории упругости Лейбензона, Тимошенко, Филоненко-Бородича и др. Автор, ставя своей задачей выяснение физического содержания основных результатов теории, стремился объединить в одной книге сопротивление материалов, начала строительной механики и теорию упругости. Это повлекло за собой в одних местах повторения, в других — конспективность изложения, но в то же время позволило вскрыть связь между основными положениями теории упругости. Книга снабжена большим количеством задач, решение которых доведено до численного ответа. В русском издании бее встречающиеся английские меры пересчитаны на метрические.  [c.4]

Материал рассчитан на студентов, освоивших курсы Технология конструкционных материалов , Материаловедение , Взаимозаменяемость, стандартизация и технические измерения , прошедших профилируюш,ие дисциплины па специальности ( Теория резания и режущие инструменты , Металлорежущие станки Технология машиностроения ) и технологическую практику. При проработке этого курса обращается внимание на изучение методики конструирования и расчета приспособлений, развиваются и синтезируются основные положения курса Основы технологии машиностроения применительно к задачам конструирования приспособлений, к выбору и обоснованию принятых решений. Широко используются общеинженерные дисциплины теоретическая механика, сопротивление материалов, теория механизмов и машин, гидравлика, электротехника и др. Зная принципы и методику конструирования, студент может творчески поЛойти к созданию работоспособного, высокопроизводительного и экономичного приспособления, без слепого копирования существующих конструкций.  [c.3]

Упругость и пластичность. Понятия напряженного и деформированного состояний, введенные в предыдущих -параграфах, носят первое — чисто статический характер, второе — геометрический, и еще ничем ие связаны с реальными свойстваш тела. Напряжения и деформации могут существовать не только в твердом теле, но и в жидкости, в газе и вообще в любой сплошной среде. В реальных твердых телах напряжения и деформации оказываются связанными между собой определенными зависимостями, которые могут быть установлены лишь из опыта. Н ежное установление этих зависимостей является основной задачей при построении теории сопротивления материалов. Различные материалы обладают различными свойствами, зависимости между напряжением и деформацией оказываются для них различными. Поэтому прн пользовании темн или иными формулами сопротивления материалов необходимо следить за тем, чтобы свойства тех тел, к которым эти формулы применяются, соответствовали основным предпосылкам, положенным в основу при их выводе.  [c.25]


Смотреть страницы где упоминается термин Основные положения Задачи сопротивления материалов : [c.10]    [c.93]   
Смотреть главы в:

Сопротивление материалов  -> Основные положения Задачи сопротивления материалов



ПОИСК



155—157, 241—242 — Основные положения

Задача о положениях

Задача основная

Материал основной

Основные задачи

Основные задачи сопротивления материалов

Основные положения Задачи курса Сопротивление материалов

Основные положения Задачи сопротивления материалов. Основные допущения

Основные сопротивления. 122 — Основные

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Основные положения

СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ ОСНОВНЫЕ ЗАДАЧИ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ

Сопротивление материало

Сопротивление материалов

Сопротивление материалов Основные положения сопротивления материалов

Сопротивление материалов Основные положения сопротивления материалов Задачи сопротивления материалов. Понятия о деформациях, упругости и прочности. Основные допущения, принятые в сопротивлении материалов

Сопротивление материалов, задачи

Сопротивление основное



© 2025 Mash-xxl.info Реклама на сайте