Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Катодная защита от коррозии блуждающими токами

Катодную защиту от коррозии блуждающими токами применяют только в тех случаях, когда использование прямых, поляризованных или усиленных дренажей малоэффективно или неоправданно технико-экономическими соображениями (наличие остаточных положительных потенциалов после ввода в эксплуатацию электродренажных установок при значительном удалении трубопроводов от рельсов и отсасывающих пунктов и т. п.)-  [c.26]

КАТОДНАЯ ЗАЩИТА ОТ КОРРОЗИИ БЛУЖДАЮЩИМИ ТОКАМИ  [c.270]


Источниками блуждающих токов могут быть линии электропередачи системы провод—земля, электролизеры и гальванические ванны, катодные установки, работающие сварочные агрегаты, заземления постоянного тока и т. п. Среднесуточная плотность токов утечки, превышающая 0,15 мА/дм , считается опасной. В таких зонах подземные металлические сооружения нуждаются в специальных методах защиты от коррозии блуждающими токами.  [c.390]

Дренажная защита — это способ защиты от коррозии блуждающими токами, который заключен в вынужденной катодной поляризации путем отвода блуждающих токов от защищаемого сооружения к источнику этих токов.  [c.228]

Основное средство защиты от коррозии блуждающими токами—электродренажная защита. Катодную защиту применяют только в тех случаях, когда использование пря- мых, поляризованных или усиленных дренажей малоэффективно или не оправдано технико-экономическими соображениями.  [c.233]

Защита от коррозии блуждающими токами может осуществляться при помощи катодных установок. Обычно они применяются в тех случаях, когда дренажная защита по технико-экономическим соображениям нецелесообразна или невозможна.  [c.270]

Если защитный ток для резервуаров-хранилищ с катодной защитой от коррозии из-за таких соединений получается слишком большим, то обычно устанавливают изолирующие фланцы в трубопровод, отходящий от наполнительного патрубка. При этом нужно следить за тем, чтобы перемычка для уравнивания потенциалов не была оборвана (т. е. действовала постоянно). Если на железнодорожных линиях с тягой на постоянном токе постоянно действующее соединение между рельсами и переливным устройством создает опасность коррозии блуждающими токами, то уравнивание потенциалов следует выполнять только во время наполнения резервуара-хранилища (из железнодорожной цистерны).  [c.280]

Опасность коррозии по пунктам а и б в соответствии с данными из раздела 4.3 не может быть уменьшена улучшением качества покрытия, поскольку полное отсутствие каких-либо дефектов нельзя гарантировать. Опыт показывает, что дефектов покрытия на стальных трубах высоковольтных кабелей нельзя избежать даже при самой тщательной прокладке. Устранение опасности коррозии здесь возможно только применением катодной защиты от коррозии и защиты от блуждающих токов. В случае свинцовых оболочек необходимо учитывать ограничения по чрезмерно отрицательным потенциалам в соответствии с рис. 2.11 и разделом 2.4. Поскольку алюминий может разрушаться как при анодной, так и при катодной коррозии, соответствующее ограничение едва ли технически осуществимо ввиду узости допустимого диапазона потенциалов (см. рис. 2.16). Полимерное покрытие алюминиевых оболочек совершенно не должно иметь дефектов [3, 4].  [c.306]


Мероприятия по защите кабелей от блуждающих токов аналогичны соответствующим мероприятиям для трубопроводов и описаны в разделе 16.3. Несмотря на низкоомное заземление, при усиленном дренаже блуждающих токов катодная защита от коррозии может быть обеспечена даже на отдаленных участках трассы (рис. 15.2). Полная катодная защита от коррозии также и в зоне заземлителей возможна с применением разъединительных устройств, описанных в разделе 15.2.1.  [c.313]

Однако и высоковольтные установки могут испытывать неблагоприятное воздействие от трубопроводов. Стальные трубопроводы обычно снабжают системой катодной защиты от коррозии. Однако ввиду очень хорошего качества электрической изоляции — покрытия труб — требуемый защитный ток очень невелик, и поэтому вредного воздействия на находящиеся поблизости высоковольтные заземлители едва ли можно ожидать. Все же анодные заземлители систем катодной защиты не следует располагать поблизости от мачт или заземлителей высоковольтных линий электропередач, так как через заземляющий (грозозащитный) трос вытекают блуждающие токи, которые могут оказать вредное влияние на сооружения, расположенные на некотором отдалении (см. раздел 11.3.3).  [c.425]

Для эффективной защиты подземных сооружений от коррозии блуждающими токами также необходим комплекс мероприятий, включающий пассивные и активные меры защиты. К первым относятся меры, проводимые ещё на стадии проектирования и строительства выбор оптимальной трассы трубопровода, удаление подземных сооружений друг от друга и особенно от рельсовой сети электрифицированного транспорта, применение в местах их сближений и пересечения надёжной локальной изоляции, а также устройство специальных коллекторов. К активным методам защиты подземных сооружений от коррозии относятся электрохимическая защита путём катодной поляризации трубопровода [51].  [c.31]

Катодную защиту внешним током применяют, как правило, для предохранения подземных сооружений от почвенной коррозии, а от коррозии блуждающими токами — лишь в тех случаях, когда применение устройства электрического дренажа нецелесообразно по технико-экономическим соображениям.  [c.256]

Катодную защиту от коррозии, вызываемой блуждающими токами, следует применять в тех случаях, когда применение поляризованных и усиленных дренажей неоправданно по технико-экономическим показателям, что может иметь место при значительном удалении защищаемого кабеля от рельсовых путей и пунктов отсасывания. Защита катодными установками может быть применена также при наличии остаточных положительных потенциалов на кабеле после введения в эксплуатацию дренажей.  [c.147]

Наиболее эффективным средством защиты металлических конструкций от коррозии блуждающими переменными токами является метод поляризованных (присоединенных к защищаемому сооружению через полупроводниковые диоды) протекторов и дренажей он дает возможность снять с корродирующих металлических конструкций анодный полупериод переменного тока и оставить на них катодный полупериод, который обеспечивает их катодную защиту.  [c.397]

Электродренажная защита - наиболее эффективная защита от коррозии под действием блуждающих токов. Основной принцип её состоит в устранении анодных зон на подземных сооружениях. Это достигается отводом дренажом блуждающих токов с участков анодных зон сооружения в рельсовую часть цепи, имеющую отрицательный или знакопеременный потенциал, или на отрицательную сборную шину отсасывающих линий тяговой подстанции. Потенциал сооружения смещается в отрицательную сторону, а анодные зоны, вызванные блуждающими токами, ликвидируются. При этом катодные зоны в местах входа блуждающих токов в сооружение сохраняются. Очевидно, что электрический дренаж работает только в том случае, когда разность потенциалов соору жение-элемент рельсовой сети положительна или искусственно становится положительной, т. е. потенциал ПСМ отрицательнее потенциала рельсовой сети.  [c.26]

В последующих главах подробно рассматриваются свойства и применение протекторов, катодных преобразователей, специального оборудования для защиты от блуждающих токов и анодов (анодных заземли-телей) с наложением внешнего тока. В числе областей применения рассматриваются подземные трубопроводы, резервуары-хранилища, цистерны, кабели систем связи, сильноточные кабели и кабели с оболочкой, заполненной сжатым газом, суда, портовое оборудование и внутренняя защита установок для питьевой воды и различных промышленных аппаратов. Отдельная глава посвящена проблемам защиты трубопровода и кабелей, подвергаемых действию высокого напряжения. В заключение рассматриваются затраты на защиту от коррозии и вопросы экономичности. В приложении даны справочные таблицы и дан вывод математических формул, представлявшихся необходимыми для практического применения способов защиты и для более полного понимания излагаемого материала.  [c.18]


Во многих практических случаях возникает вопрос о том, можно ли подвести к металлической поверхности достаточный защитный ток при наличии геометрических препятствий, например в области экранирования тока камнями, в щелях и в особенности при неплотном прилегании ленты для защиты от коррозии или при отслоении покрытий (см. раздел 6.1). Однако обусловленное геометрией повышенное сопротивление для защитного тока в равной мере сказывается и для тока коррозионного элемента, для блуждающего тока и в ограничении доступа окислителей при катодной окислительно-восстановительной реакции по выражению (2.9). Плотности тока при электрической проводимости и ири диффузии описываются аналогичными уравнениями (2.11) и  [c.61]

Новые стальные трубопроводы для транспортировки газа, воды, нефтепродуктов обычно имеют покрытие, обеспечивающее хорошую электрическую изоляцию. Для таких трубопроводов во всех случаях целесообразно предусматривать катодную защиту fl7, 18] см. раздел 11. В области влияния железных дорог с тягой на постоянном токе даже и трубопроводы с хорошим изоляционным покрытием подвергаются опасности коррозии (см. раздел 4.3). Однако такие трубопроводы обычно не проходят около подстанций. Напротив, пересечения или сближения с линиями железных дорог постоянного тока наблюдаются довольно часто. Ввиду малости требуемого защитного тока и обычно уже предусмотренного или по крайней мере легко осуществимого электрического отсоединения от других низкоомно заземленных сооружений такие трубопроводы чаще всего можно эффективно защищать при помощи станций катодной защиты с регулируемым потенциалом. Если трубопроводы уже уложены, то области стекания блуждающих токов можно выявить путем измерения потенциалов труба—грунт. Целесообразно также дополнительное измерение потенциала рельс—грунт или разности напряжений между рельсом и трубопроводом. Если потенциал свободной коррозии неизвестен или если измерительных подсоединений к трубопроводу нет и поэтому неясно, где имеется наибольшая опасность коррозии блуждающими токами и есть ли вообще такая опасность, то области стекания тока можно определить путем  [c.335]

Большое влияние на работу конструкции оказывают внешние токи. При катодной поляризации в большинстве случаев может быть обеспечена защита от коррозии. При анодной поляризации для систем металл — раствор, не склонных к пассивации, происходит усиленное растворение металла. Необходимо принимать специальные меры по защите от коррозии конструкций и сооружений от блуждающих токов. Специфическое влияние на коррозионные процессы оказывают ультразвук и радиоактивное излучение.  [c.24]

Критерием эффективности защиты подземных металлических сооружений является минимальный защитный потенциал, который должен быть не менее минус 0.85 В (по абсолютной величине) по медносульфатному электроду сравнения. В этой связи с целью выбора оптимальных средств электрохимической защиты от коррозии водоводов Уфимского городского водоснабжения были проведены суточные измерения потенциалов рельс-земля , что позволило получить наиболее полную информацию о наличии катодных, анодных и знакопеременных зон и выявить поле блуждающих токов.  [c.75]

На заводах и предприятиях необходимо, как правило, осуществлять совместную электрозащиту подземных металлических сооружений от почвенной коррозии и коррозии блуждающими токами при помощи установок катодной защиты.  [c.256]

Из изложенного следует, что наиболее целесообразным средством защиты алюминиевых оболочек кабелей от почвенной коррозии и от действия блуждающих токов являются надежные защитные покровы. При нарушении целостности покровов в случае агрессивной почвы и наличии постоянных блуждающих токов следует применять катодную защиту со строгим контролем защитного потенциала. Во многих случаях весьма полезными оказываются протекторная защита [1] и защита дополнительными заземлениями [9]. Последняя может быть применена и при защите кабелей, находящихся в зоне действия переменного блуждающего тока.  [c.85]

Для предотвращения коррозии блуждающими токами кабельные трассы, электрическое и электронное оборудование должны быть хорошо изолированы от основной конструкции возникающие блуждающие токи следует отводить с помощью специального проводника или наложением катодной защиты.  [c.142]

Источниками блуждающих постоянных токов обычно являются пути электропоездов, заземления линий постоянного тока, установки для электросварки, системы катодной защиты и установки для нанесения гальванических покрытий. Источники блуждающих переменных токов — это обычно заземления линий переменного тока или токи, индуцированные в трубопроводах проложенными рядом электрическими кабелями. Пример возникновения блуждающего постоянного тока от трамвайной линии, где стальные рельсы используются для возвращения тока к генераторной станции, показан на рис. 11.1. Вследствие плохого контакта рельсов на стыках и недостаточной изоляции их от земли часть тока выходит в почву и находит пути с низким сопротивлением, например подземные газо- и водопроводы. В точке А труба попадает под воздействие катодной защиты и не подвергается коррозии, а в точке В, напротив, сильно корродирует, так как по отношению к рельсам является анодом. Если в точке В труба защищена неметаллическим покрытием, это усугубляет коррозионные разрушения, так как в этом случае все блуждающие токи выходят через дефекты в покрытии трубы, что вызывает увеличение плот-, ности тока на ограниченных участках поверхности и ускоряет разрушение трубы.  [c.210]

По уравнению (23) рассчитываются блуждающие токи в зоне рельсового транспорта на расстоянии до 500 м. При хорошей изоляции трубопроводов следует применить либо вентильные перемычки с рельсами, либо другие известные средства, уменьшающие входное (переходное) сопротивление магистрального трубопровода. Более удаленные от рельсов подземные сооружения (/> 500 м), из-за малых значений блуждающих токов, практически не будут подвержены коррозии. Защиту их от почвенной коррозии целесообразно выполнять с помощью протекторов или катодных станций.  [c.48]


Для поднятия потенциала на сооружении до защитных значений применяют так называемый усиленный электродренаж, принцип работы которого ничем не отличается от работы катодной установки. Роль анодов для выпрямительной установки 5 выполняют рельсовые сети 2 и крепежная их арматура. При такой схеме защиты происходит усиленная коррозия рельсов и ее крепежной арматуры, а также значительно возрастают величина и зона распространения блуждающих токов в земле, что видно из следующего примера.  [c.50]

Авторами предложена комплексная защита сооружений, рельсов и крепежной арматуры от блуждающих токов путем использования вентильных перемычек и энергии контактной сети, которая подробно описана в [28]. Такая система позволяет сократить число катодных станций и одновременно защитить от блуждающих токов и почвенной коррозии как рельсы, так и другие сооружения.  [c.55]

Установлено, что ежегодный рост количества и мощности катодных станций вызван не агрессивностью грунтов, а действием блуждающих токов развивающегося рельсового транспорта (трамвая). Катодные установки, в свою очередь, наводят огромные блуждающие токи на близлежащие сооружения, на которых также появляются опасные коррозионные участки. Таким образом, создается ситуация, при которой все подземные сооружения города требуют защиты либо от почвенной коррозии, либо от блуждающих токов. На защиту такой системы коммуникаций (цепочки) расходуется огромное количество металла, электроэнергии и других средств.  [c.60]

Рис. 22.3. Число ежегодных прорывов стенки вследствие коррозии на 1 км длины трубопровода с условным проходом DN=500 мм в зависимости от срока его службы 1 — в обычных условиях 2 — при большом выходе блуждающих токов А — момент включения системы катодной защиты В — предположительный ход кривых 1 ц 2 без применения катодной защиты Рис. 22.3. Число ежегодных прорывов стенки вследствие коррозии на 1 км <a href="/info/26313">длины трубопровода</a> с <a href="/info/170323">условным проходом</a> DN=500 мм в зависимости от срока его службы 1 — в обычных условиях 2 — при большом выходе блуждающих токов А — момент включения <a href="/info/39781">системы катодной защиты</a> В — предположительный ход кривых 1 ц 2 без применения катодной защиты
При разветвленной сети трамвайных путей, пригородных электрифицированных железных дорог на постоянном токе и густой сети подземных сооружений положительный эффект по защите от коррозии подземных коммуникаций, при известных конкретных условиях, дает применение катодной и электродренажной защит. Часто эти два вида защиты применяются комплексно и охватывают защитой подземные сооружения целого района, в котором причиной коррозии являются не только блуждающие токи от электрифицированного транспорта, но также и почвенные условия.  [c.86]

Тепловые сети изолируются формованными изделиями типа Юни-бестос . Изоляция труб производится на заводе, где также устанавливаются роликовые опоры с хомутами, приваренными к трубе. Трубы с опорами устанавливаются в строительной оболочке с обеспечением цилиндрической воздушной прослойки шириной 102 лж. Строительная оболочка выполняется либо из забетонированной снаружи волнистой тонкостенной металлической трубы с армированием защитного слоя, либо из металлической тонкостенной трубы с внешним защитным слоем толщиной 1,6 мм, предохраняющим ее от коррозии. Все подземные сети снабжены катодной защитой от коррозии блуждающими токами в земле.  [c.428]

В конце 1920-х гг. стали известны публикации по катодной защите трубопроводов в Западной Европе. В Бельгии вначале в широких масштабах применяли дренажную защиту от токов утечки трамвая. С 1932 г. Л. де Брувер в Брюсселе защищал распределительные газовые сети, а с 1939 г. — днища газгольдеров током от постороннего источника [43]. В Германии в 1939 г. о способе катодной защиты от коррозии сообщалось следующее [44] В качестве защитных мероприятий при наличии блуждающих токов следует рекомендовать в первую очередь те, которые препятствуют стенанию токов с рельсов в грунт. Для защиты труб, целесообразно примерно на расстоянии до 200 м от пересечения трубопровода с рельсовыми путями прокладывать трубы с покрытиями, имеющими два слоя армирующих обмоток, и применять изолирующие муфты для повышения продольного сопротивления трубопровода. Электропроводное соединение труб с рельсами можно делать лишь с большой осторожностью, чтобы не получить противоположного эффекта . Как дальнейшее мероприятие предлагалось наложение тока, который делал бы трубу всегда катодом, т. е. способ катодной защиты .  [c.38]

Для станций катодной защиты от коррозии изготовляют защитные установки номинальной выходной мощностью примерно от 10 Вт для цистерн (бензоколонок) и коротких трубопроводов до 20 кВт для крупных подводных стальных сооружений. Защитные установки для трубопроводов обычно имеют выходную мощность в пределах 100—600 Вт. Рекомендуется принимать номинальный ток защитной установки примерно вдвое большим, чем требуемый защитный ток по расчету, чтобы иметь достаточный запас на будущее расширение системы, в случае возможного снижения сопротивления изоляции, увеличения блуждающих токов и других изменений. Требуемое номинальное напряжение на выходе определяется по величине необходимого защитного тока и сопротивлению цепи анодный заземлитель—грунт — объект защиты, которое принимается по оценке или мод5ет быть измерено после окончательной установки анодных заземлителей. По напряжению на выходе тоже необходимо предусматривать достаточный запас. По номинальным значениям тока и напряжения на выходе может быть получено номинальная выходная мощность.  [c.219]

Для оценки эффективности катодной защиты от коррозии — за исключением случая грунтов с очень высоким электросопротивлением — как практический критерий может быть использован и потенциал включения и u/ uSO = 1>5 В. При такой величине Uein даже и при наличии блуждающих токов никакой опасности коррозии не может быть [5].  [c.313]

И. В. Стрижевский. Теория и расчет дренажной и катодной защиты магистральных трубопроводов от коррозии блуждающими токами. Гостоптех-издат, 1963.  [c.293]

Известны случаи, когда подключение электродре-нажных устройств к рельсам железной дороги невозможно ло условиям безопасной работы СЦБ (дренажи разрешается подключать только через два дросселя на третий). Следует также иметь в виду, что станция катодной защиты от почвенной коррозии, работающая в условиях с медленным изменением выходных параметров, требует ежемесячной перерегулировки. Данные наблюдения за работой станций катодной защиты, проведенного рядом авторов [2], указывают на возможность произвольного изменения тока в очень широких пределах — до 200—300%. Средние отклонения тока катодной защиты в поле блуждающих токов составляют, по данным длительных наблюдений, 70—100% заданного режима.  [c.137]

Дренаж. Как видно из рис. 11.1, коррозию блуждающими токами можно полностью устранить, если соединить трубу В с рельсами С металлическим проводником с низким сопротивлением. Такой способ называется дренажем. Если разрушение вы-лывается системой катодной защиты, в линию дренажа можно включить резистор, чтобы избежать большого изменения потенциала незащищенной части системы при включении и выключении тока катодной защиты. Такое сопротивление в значительной мере предохраняет незащищенную часть системы от разрушения. В то же время оно позволяет избежать большого увеличения катодного тока, необходимого для защиты дополнительных конструкций, присоединяемых дренажем. Если по какой-то причине блуждающие токи периодически меняют направление, в дренажную линию включают выпрямляющее устройство (диод), тогда ток любого направления безопасен для конструкции.  [c.214]


Проведенные электрометрические измерения (коррозионная активность грунта, потенциалы сооружение - земля , и рельс - земля по медносульфатному и стальному электроду сравнения) по ГОСТ [22] непосредственно на компенсаторах и находящихся в данном районе водопровода, газопровода и трамвайных рельсовых путях показали, что на данном участке теплопровода существует явно выраженные знакопеременные (анодно-катодные) или анодные зоны, обусловленные блуждающими токами. Следует отметить, что для магистральных подземных трубопроводов согласно ГОСТ [22] наличие таких зон требует обязательного применения электрохимической защиты от коррозии элек-тродренажной, катодной или протекторной.  [c.92]

Присоединение отсасывающих фидеров обычно производится в сухом грунте, так как во влажной почве возможна утечка электрического тока. Электродренаж заключается в отводе тока от подземных сооружений на отрицательные шины электростанций. Для защиты от блуждающих токов применяют также и изолирующие битумные покрытия, а для кабеля — джутовую обмотку, пропитанную битумными составами, но в дефектных местах покрытий блуждающие токи проникают к металлу. Кроме указанных методов защиты, для оръбы с коррозией блуждающими токами применяют катодную защиту (см. главу ХУП).  [c.76]

Катодная защита судов от коррозии охватывает комплекс мероприятий по наружной защите подводной части судна и всех навесных устройств и отверстий (например, гребного винта, руля, кронштейнов гребного вала, кингстонных выгородок, черпаков, струйных рулей) и по внутренней защите различных танков (резервуаров балластной и питьевой воды, для топлива и хранения других продуктов), трубопроводов (конденсаторов и теплообменников) и трюмов. Указания по выбору размеров и распределению анодов или протекторов имеются в нормативных документах [1—5]. Суда отличаются от других защищаемых объектов, рассматриваемых в настоящем справочнике, тем, что они в ходе эксплуатации подвергаются воздействию вод самого различного химического состава. Важное значение при этом имеют в первую очередь со-лесодержание и электропроводность, поскольку эти факторы оказывают существенное влияние на действие коррозионных элементов (см. раздел 4.2) и на распределение защитного тока (см. раздел 2.2.5). Кроме того, на судах приходится учитывать проблемы, связанные с наличием разнородных металлов (см. раздел 2.2.5). Мероприятия по защите судов от блуждающих токов рассмотрены в разделе 16.4.  [c.352]

Для защиты подземных сооружений от коррозии, вызываемой блуждающими токами, следует применять дренажную защиту (поляризованные или усиленные дренажи). Усиленные дренажи применяются в тех случаях, когда применение поляризованных дренажей неэффективно или неоправдано экономически. Катодную защиту подземных сооружений от коррозии, вызываемой блуждающими токами, следует применять в тех случаях, когда применение поляризованных и усиленных дренажей неонравданно по техникоэкономическим соображениям.  [c.52]

Автоматическая катодная станция СКСА-1200 предназначена для защиты подземного сооружения от почвенной коррозии и коррозии, вызываемой блуждающими токами, автоматически поддерживает защитный потенциал на сооружении.  [c.128]

Автоматическая сетевая катодная станция СКСП-1200п241Д предназначена для катодной защиты подземных металлических трубопроводов от почвенной коррозии на участках с большим сезонным колебанием переходного сопротивления труба — земля, при нестабильности напряжения питающей сети, а также в зоне действия блуждающих токов. Станция может быть использована в качестве автоматической усиленной дренажной установки.  [c.129]


Смотреть страницы где упоминается термин Катодная защита от коррозии блуждающими токами : [c.119]    [c.328]    [c.37]    [c.315]    [c.36]    [c.38]    [c.118]   
Смотреть главы в:

Коррозия и защита подземных металлических сооружений  -> Катодная защита от коррозии блуждающими токами



ПОИСК



V катодная

Блуждающие токи

Защита от коррозии катодная

Катодная защита

Коррозия блуждающим током

Ток блуждающий

Токи катодной защиты



© 2025 Mash-xxl.info Реклама на сайте