Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Атомы акцепторные

В другом случае, отвечающем второму типу примесного полупроводника, электроны в результате теплового возбуждения переходят из состояний вблизи потолка заполненной или валентной зоны на уровни примесных атомов акцепторного т и п а. В результате этого процесса освобождается часть состояний в верхней части валентной зоны и, следовательно, приложение электрического поля может вызвать определенные изменения в распределении скоростей электронов этой зоны, т. е. привести к электрической проводимости. Электроны, занимающие состояния вблизи потолка валентной зоны, имеют аномальные характеристики скорости, и можно показать, что если валентная зона содержит N электронов, из которых часть, скажем X электронов, с наибольшей энергией удалена, то электрическая проводимость при этом проявляется так, как если бы ток переносился X носителями с зарядом - -е.  [c.39]


Температурная зависимость удельного сопротивления полупроводника, в который добавлено небольшое количество примеси, показана на рис. 5.7 [12]. На практике в полупроводнике всегда присутствуют как донорные, так и акцепторные примеси, и разработчик полупроводниковых термометров сопротивления может лишь выбирать соотношение между теми и другими. Для описания процессов проводимости рассмотрим германий, содержащий донорные атомы мышьяка в концентрации N(1 и какие-либо акцепторные атомы в концентрации Л а-На рис. 5.7 можно выделить четыре температурных диапазона, в каждом из которых преобладает какой-либо один механизм проводимости". В высокотемпературном диапазоне [I] проводимость обусловлена главным образом электронами, термически возбужденными из валентной зоны в зону проводимости согласно уравнению (5.8), поскольку все примесные атомы давно уже ионизованы. Это область собственной проводимости для германия она начинается чуть выше 400 К. Этот диапазон не представляет особого интереса для германиевых термометров сопротивления.  [c.198]

Различают две группы межатомных и межмолекулярных связей, имеющих электрическую природу 1) физические (ван-дер-ваальсовские) и 2) химические (ионная, ковалентная, металлическая, водородная, донорно-акцепторная и их сочетания). Прочность химических связей (энергия, требуемая для разъединения вещества на отдельные молекулы, атомы или ионы) составляет десятки и сотни килоджоулей, а физических — доли и единицы килоджоуля.  [c.433]

Донорные и акцепторные примеси. Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов — донорные и акцепторные. Если, например, в кристалле кремния имеется примесь атомов мышьяка, то эти атомы замещают в узлах кристаллической решетки атомы кремния. Пятивалентный атом мышьяка вступает в ковалентные связи с четырьмя атомами кремния, а его пятый электрон оказывается незанятым в связях (рис. 155).  [c.155]

В то же время, при наличии в диэлектрике примесных атомов, свободные носители заряда могут появиться за счет термической активации примесных уровней. Вследствие этого при нормальных и низких температурах проводимость в диэлектриках имеет примесный характер. Так же, как и в полупроводниках, носителями заряда здесь могут быть электроны и дырки. Если примесь имеет донорный характер, то основными носителями заряда являются электроны, а неосновными — дырки. Такой диэлектрик (по аналогии с полупроводником) называют электронным или диэлектриком п-типа. Если же примесь акцепторная, то основными носителями являются дырки. В этом случае диэлектрик называют дырочным или р-типа.  [c.272]


Различают два вида примесных уровней донорные и акцепторные. Первые располагаются в запрещенной зоне ниже дна зоны проводимости и способны отдавать под действием возбуждения электроны в зону проводимости. При этом доноры (донорные атомы) превращаются в положительно заряженные ионы, которые не участвуют в электронной проводимости (рис. 35). Полупровод Ник с донорными примесями  [c.91]

Приведенные данные показывают, что электрические и оптические свойства аморфных полупроводников похожи на свойства кристаллических полупроводников, но не тождественны им. Это сходство, как показал специальный анализ, обусловлено тем, что энергетический спектр электронов и плотность состояний для ковалентных веществ, которым относятся полупроводники, определяются в значительной мере ближним порядком в расположении атомов, поскольку ковалентные связи короткодействующие. Поэтому кривые N (е) для кристаллических и аморфных веществ во многом схожи, хотя и не идентичны. Для обоих типов веществ обнаружены энергетические зоны валентная, запрещенная и проводимости. Близкими оказались и общие формы распределения состояний в валентных зонах и зонах проводимости. В то же время структура состояний в запрещенной зоне в некристаллических полупроводниках оказалась отличной от кристаллических. Вместо четко очерченной запрещенной зоны идеальных кристаллических полупроводников запрещенная зона аморфных полупроводников содержит обусловленные топологическим беспорядком локализованные состояния, формирующие хвосты плотности состояний выше и ниже обычных зон. Широко использующиеся модели кривых показаны на рис. 12.7 [68]. На рисунке 12.7, а показана кривая по модели (Мотта и Дэвиса, согласно которой хвосты локализованных состояний распространяются в запрещенную зону на несколько десятых эВ. Поэтому в этой модели кроме краев зон проводимости (бс) и валентной (ev) вводятся границы областей локализованных состояний (соответственно гл и ев). Помимо этого авторы модели предположили, что вблизи середины запрещенной зоны за счет дефектов в случайной сетке связей (вакансии, незанятые связи и т. п.) возникает дополнительная зона энергетических уровней. Расщепление этой зоны на донорную и акцепторную части (см. рис. 12.7, б) приводит к закреплению уровня Ферми (здесь донорная часть обусловлена лишними незанятыми связями, акцепторная — недостающими по аналогии с кристаллическими полупроводниками). Наконец, в последнее время было показано, что за счет некоторых дефектов могут существовать и отщепленные от зон локализованные состояния (см. рис. 12.7, в). Приведенный вид кривой Л (е) позволяет объяснить многие физические свойства. Так, например, в низкотемпературном пределе проводимость должна отсутствовать. При очень низких температурах проводимость может осуществляться туннелированием (с термической активацией) между состояниями на уровне Ферми, и проводимость будет описываться формулой (12.4). При более высоких температурах носители заряда будут возбуждаться в локализованные состояния в хвостах. При этом перенос заряда  [c.285]

Если в естественный полупроводник IV группы ввести в качестве примеси трехвалентные атомы из III группы элементов, то для осуществления ковалентной связи с четырехвалентным окружением этим атомам не хватает по одному электрону. Недостающие электроны они заимствуют у соседних атомов с затратой небольшой энергии порядка 10 эВ. В результате в валентной зоне возникает дырка, которая и обусловливает дырочную проводимость полупроводника. Поскольку энергия ионизации основных атомов для образования дырки мала ( 10 эВ), при комнатной температуре на каждый атом примеси приходится по одной дырке. Естественная дырочная и электронная проводимости при этом, как и в случае донор-ных примесей, малы. Поэтому доминирующей будет дырочная проводимость. Трехвалентные атомы примеси называются акцепторными. Акцепторные энергетические уровни лежат в запрещенной зоне весьма близко к ее верхнему краю. Для полупроводников IV группы периодической системы элементов наиболее важными акцепторными примесями являются элементы III группы-галлий, индий, таллий.  [c.351]

Во втором случае атомы вводимой примеси имеют меньшее число валентных электронов, чем атомы полупроводника. Поэтому атомам примеси не хватает валентных электронов для образования всех химических связей с окружающими их атомами полупроводника. Недостающие электроны могут быть захвачены атомами примеси у соседних атомов полупроводника, для чего необходима небольшая энергия Ел (рис. 3, в). При этом атомы примеси приобретают отрицательный заряд, а в валентной зоне на месте захваченного электрона образуется дырка. Введение в полупроводник таких примесей, называемых акцепторными, приводит к возрастанию концентрации дырок в валентной зоне при неизменной концентрации электронов в зоне проводимости. Полупроводники, легированные акцепторной примесью, называют дырочными, или полупроводниками р-типа электропроводности.  [c.8]


Если в кремний введен атом трехвалентного элемента Ш группы Периодической системы элементов Д. И. Менделеева (например, бора В), то все три его валентных электрона вступают в связь с четырьмя электронами соседних ато-.мов кремния. Для образования устойчивой оболочки из восьми электронов не хватает одного. Им является один из валентных электронов, отбираемый от ближайшего соседнего атома, у которого в результате образуется незаполненная связь - дырка (рис. 3.5, д). На энергетической диаграмме этот процесс соответствует переходу электрона из валентной зоны на уровень акцепторов Wa и образованию в валентной зоне дырки (рис. 3.5, е). Примесный атом превращается в неподвижный ион с единичным отрицательным зарядом, свободного электрона при этом не образуется. Примесь такого типа называется акцепторной, а полупроводники, в которые введены атомы акцепторов, - дырочными или р-типа электропроводности. Дырок в них больше, чем свободных электронов. Поэтому эти полупроводники обладают преимущественно дырочной электропроводностью.  [c.51]

В состав большей части органических ингибиторов входит по крайней мере одна полярная группа с атомом азота, серы или кислорода, а в некоторых случаях селена или фосфора, т.е. элементов, имеющих на внешней орбите неподеленные пары электронов, способных поэтому к активному донорно-акцепторному взаимодействию. Использование  [c.145]

Для селеновых вентилей применяется возможно более чистый селен, содержащий селена не менее 99,99%, так как от степени чистоты очень сильно зависят такие параметры, как плотность тока, обратное напряжение и др. Селен может быть кристаллическим и аморфным. В производстве полупроводниковых вентилей используется кристаллическая модификация с температурой плавления 220° С. Роль акцепторной примеси исполняют собственные атомы, не вошедшие в кристаллическую решетку. Запирающий слой в виде селенида кадмия образуется при формовании у подложки. Благодаря повышенным плотностям тока и более широкому диапазону рабочих температур селеновые вентили в отличие от меднозакисных могут быть использованы в разных промышленных устройствах. Однако по своим параметрам они не могут конкурировать  [c.278]

Если теперь в полупроводник IV группы таблицы Менделеева ввести элемент III группы, например алюминий, то все три валентных электрона примесного атома будут участвовать в образовании ковалентных связей, одна из четырех связей с ближайшими атомами основного вещества окажется незавершенной (рис. 8.1, в). В незаполненную связь около атома алюминия за счет тепловой энергии может перейти электрон от соседнего атома основного вещества. При этом образуются отрицательный ион алюминия и свободная дырка, перемещающаяся по связям основного вещества и, следовательно, принимающая участие в проводимости кристалла. Примесь, захватывающая электроны, называется акцепторной. Для образования свободной дырки за счет перехода электрона от атома основного вещества к атому примеси требуется значительно меньше энергии, чем для разрыва ковалентных связей кремния. В силу этого количества дырок может быть значительно больше количества свободных электронов и проводимость кристалла будет дырочная.  [c.270]

Рассмотрим две отдельно взятые области электронного и дырочного полупроводников, показанные на рис. 8.9, а. Основные носители заряда в полупроводнике /г-типа — электроны (на рис. 8.9,а обозначены знаком минус), а в полупроводнике р-типа—дырки (на рис. 8.9, а обозначены знаком плюс). Ионизированные атомы донорной и акцепторной примеси обозначены соответственно знаками плюс и минус в кружочках. Неосновные носители в электронном и дырочном полупроводниках не обозначены, так как их концентрация очень мала в сравнении с концентрацией основных носителей.  [c.280]

Если в решетке германия находится примесь — элемент третьей группы — индий, имеющий на внешней орбите три валентных электрона, то такая примесь создает в решетке дырку (рис. 8-2, в). В данном случае атом примеси может заимствовать электрон у одного из соседних атомов германия и стать отрицательно заряженной частицей, неподвижно закрепленной в данном месте решетки полупроводника, а дырка начнет блуждать по кристаллу. При приложении электрического поля, как показано на рис. 8-2, в, электрон будет взят от левого атома германия, который при этом получит положительный заряд и, в свою очередь, захватит электрон от следуюш,его атома, т. е. дырка будет направленно передвигаться справа налево (электропроводность типа р). На самом деле в этом случае движутся только электроны 1, 2, 3, -й, но их эстафетное перескакивание с атома на атом можно формально описать как движение одной дырки, перемещающейся в направлении, обратном направлению движения электронов, т. е. в направлении поля. Примесь элемента третьей группы периодической системы будет акцепторной.  [c.235]

Акцепторные уровни. Предположим теперь, что в решетке германия часть атомов германия замещена атомами трехвалентного индия (рис. 5.9, й). Для образования связи с четырьмя ближайшими соседями у атомов индия не хватает одного электрона. Его можно позаимствовать у атома германия. Расчет показывает, что для этого требуется затрата энергии порядка 0,01 эВ. Разорванная связь представляет собой дырку (рис. 5.9, б), так как она соот-  [c.157]

Полупроводники, содержащие одновременно донорную и акцепторную примеси. Широкое практическое применение получили полупроводники, содержащие одновременно донорную (Nj ) и акцепторную (iVa) примеси. На рис. 6.6 показана зонная структура такого полупроводника. Так как электроны стремятся занять наинизшие энергетические состояния, то они переходят с донорных атомов на акцепторные. Если концентрация доноров Л д больше, чем акцепторов N , то все акцепторные уровни оказываются занятыми электронами с донорных центров и не могут принимать электроны из валентной зоны. В то же время оставшиеся Л д — Мц доноров могут отдать свои электроны в зону проводимости, так что в целом такой полупроводник будет иметь проводимость п-тина. Происходит как бы компенсация акцепторов донорами.  [c.168]


Аналогично ведет себя и полупроводник р-типа при увеличении в нем концентрации акцепторной примеси. Так как орбиты электронов примесных атомов увеличены в полупроводнике примерно в е раз (е — относительная диэлектрическая проницаемость полупроводника), то примесные атомы начинают заметно взаимодействовать друг с другом уже при концентрации примеси 10 м (10 —10 атомных процента).  [c.170]

Для -области основными носителями являются электроны, для р-области — дырки. Основные носители возникают почти целиком вследствие ионизации донорных и акцепторных примесей. При не слишком низких температурах эти примеси ионизированы практически полностью, вследствие чего концентрацию электронов в /г-области п о можно считать равной концентрации донорных атомов п о а концентрацию дырок в р-области р,,о — концентрации акцепторных атомов в р-области Рро Л а-  [c.219]

Положение уровня Ферми в примесных полупроводниках зависит как от концентрации примеси, так и от того, является ли примесь донорной или акцепторной. В случае донорной примеси (я-полупроводник) имеет место переход электронов донорных атомов в зону проводимости при этом концентрация электронов возрастает, что приводит к возрастанию энергии Ферми Wp и смещению уровня Ферми вверх, к зоне проводимости. Чем больше концентрация доноров, тем большее количество электронов переходит в зону проводимости и тем на большую величину смещается уровень Ферми. В случае введения в полупроводник акцепторных примесей (р-полупроводник) наблюдается обеднение электро-  [c.58]

А1А , А18Ь, ОаР, ОаАз, ОаЗЬ, 1пР, 1пА5, 1п5Ь. По ряду свойств эти химические соединения близки к полупроводниковым материалам — Ое и 51. Так, подвижность носителей заряда в них достигает больших значений ширина запрещенной зоны также велика, а вводимые примеси изменяют механизм электропроводности, поскольку некоторые атомы II группы (2п, Сс1) являются акцепторными, а VI группы (5е, Те) — донорными примесями.  [c.390]

Изотермы всех ингибиторов имеют линейный характер, что свойственно адсорбции, описываемой уравнением Темкина, то есть случаю донорно-акцепторного взаимодействия частиц в адсорбированном слое (хемосорбция). Адсорбция носит моно-молекулярный характер, увеличивает энергетический барьер ионизации атомов железа и практически необратима.  [c.300]

Если в кристалле кремния часть атомов замещена атомами трехвалентного элемента, например индия, то атом индия может осуществлять связь только с тремя соседними атомами, а связь с четвертым атомом осуществляется лишь одргим электроном. При этих условиях атом индия захватывает электрон у одного из соседних атомов кремния и становится отрицательным ионом. Захват электрона от одного из атомов кремния приводит к возникновению дырки. Примеси, захватывающие электроны и создающие тем самым подвижные дырки, не увеличивая при этом число электронов проводимости, называют акцепторными (рис. 156).  [c.156]

Здесь п — полная концентрация электронов Ап( с) — концентрация электронов в зоне проводимости. Из рис. 11.11 и выражения 11.15) следует, что примесную проводимость можно получить, если каким-либо способом удастся снизить плотность состояний в запрещенной зоне. Второй путь — ввести в полупроводник большое количество примесных атомов так, чтобы перекомпенсировать дефектные состояния. Все это, разумеется, возможно при условии, что примесные атомы образуют донорные (или акцепторные) уровни в запрещенной зоне.  [c.365]

Предположим теперь, что вместо донорной примеси имеется N0 акцепторных атомов в единице объема, уровни энергии которых расположены непосредственно над потолком ва-дентной зоны. Снова считаем, что уровень Ферми проходит над потолком валентной зоны на высоте, составляющей не-сколыко коТ. Тогда почти все акцепторные уровни будут заняты электронами из валентной зоны, т. е. примесные атомы будут ионизированными, причем в валентной зоне появится N0 дырок  [c.117]

Легируют пленки гидрогенизированного аморфного кремния в процессе их роста атомами фосфора или бора (соответственно донорная и акцепторная примеси), для чего добавляют к силану газообразные фосфин РНз или диборан ВаНв. Молекулы этих газов, как и молекулы силана, разлагаются в плазме тлеющего разряда, в результате чего их атомы попадают в растущую пленку а-51 Н.  [c.16]

Введение примесей ие сопровож,яается таким эффектом, как в кристаллах, Атомы примесей в стекле попадают преимущественно в междоузлия ввиду отсутствия Строгого порадка и наличия расширенных междоузлий благодаря этому происходит смещение локальных уровней — донориых в сторону валентной зоны, а акцепторных — по направлению к зоне проводимости поэтому значение уровней и их влияние на проводимость сильно падает. -Кроме того, влияние доноров и акцепторов сильно уменьшается благодаря многочисленным локальным уровням, появление которых обусловлено флуктуацнямн в ближней порядке атомов. В стеклах отсутствует примесная проводимость, что объясняется приведенными соображениями. Наряду со стеклами, полученными сплавлением окислов металлов, известны стеклообразные бескислородные полупроводники, именуемые халькогениднымн. Это  [c.192]

Примеси внедрения. Структуры типа алмаза. Тип электропроводности определяется размерами и электроотрицательностью примесных атомов, внедряющихся в междоузлия решеток полупроводников IV группы периодической системы. Эксперимент показывает, что, в противоречие с указанным выше правилом валентности, литий (I группа), внедряясь в междоузлия решетки германия, будет донором, а кислород (VI группа) — акцептором. Внедрение большого по размерам атома лития в тесные междоузлия решетки германия оказывается возможным только после его ионизации вследствие слабой связи валентного электрона, легко о грыва-ющегося от своего атома в среде с большой диэлектрической проницаемостью (б германия-16). Образовавшийся ион лития меньших размеров может уже внедряться в тесные междоузлия решетки, а освободившийся электрон обусловливает электропроводность п-типа. Внедрение в междоузлия решетки полупроводника атомов кислорода, имеющих сравнительно небольшие размеры и большую электроотрицательность, приводит к захватам электронов из атомов полупроводника, вследствие чего возникает электропроводность р-типа. Если атом Ge или Si под влиянием энергетического воздействия перебрасывается в междоузлие, то образуются два примесных уровня донорный внедренного атома и акцепторный пустого узла.  [c.236]

Если пластины из кремния п- и р-тнпов приведены в тесный контакт, то свободные электроны и свободные дырки, диффундируя к поверхности р-п перехода, будут рекомбинировать, как показано на рис. 5.11, а, образуя слой, обедненный носителями заряда, который носит название обедненной зоны. При этом атомы примеси в области перехода, лишенные соответствующих дырок или элементов, превратятся в ионы. Эти донорные или акцепторные ионы, закрепленные в кристалле, создают электрическое поле, образующее электрический потенциальный барьер Uq, препятствующий дальнейшей миграции основных носителей, как показано на рис. 5.11,6. На рисунке показано, как меняется потенциал при пересечении р- -перехода. После того как два куска вещества приведены в соприкосновение, должно произойти выравнивание их уровней Ферми. Ток неосновных носителей, не встречающий потенциального барьера, достигает значения тока насыщения /нлс, а ток основных носителей блокируется потенциальным барьером qil . Значение потенциального барьера невозможно измерить каки.м-либо прибором, поскольку на измерительных контактах формируется такой же барьер противоположного знака.  [c.98]

Рис. 5.9, Возбуждение носителей заряда в примесных р-полупроаодниках й —атомы трехвалентного индия в решетке германия при 7 =0 К. Четвертая связь атома индия не укомплектована б — при Г>0 К электроны могут переходить ка неукомплектованные связи примесных атомов, приводя к образованию иона индия и незаполненного уровня (дырки) в валентной зоне германия в — энергетические уровни неукомплектованных связей примесных атомов представляют собой акцепторные уровни, переход электронов на акцепторные уровни при 7 >0 К приводит к образованию дырок в валентно Рис. 5.9, Возбуждение носителей заряда в примесных р-полупроаодниках й —атомы трехвалентного индия в решетке германия при 7 =0 К. Четвертая связь атома индия не укомплектована б — при Г>0 К электроны могут переходить ка неукомплектованные связи примесных атомов, приводя к образованию иона индия и незаполненного уровня (дырки) в <a href="/info/16455">валентной зоне</a> германия в — энергетические уровни неукомплектованных связей примесных атомов представляют собой акцепторные уровни, <a href="/info/334167">переход электронов</a> на акцепторные уровни при 7 >0 К приводит к образованию дырок в валентно

Пусть внутренней границей раздела двух областей полупроводника с различным типом проводимости является плоскость ММ (рис. 8,11, а) слева от нее находится полупроводник р-типа, например р-германнй с концентрацией акцепторов Л/д, справа — полупроводник -типа ( -германий) с концентрацией доноров УУд. Для простоты будем считать, что /Vg = Л/д и равно, например, 10" м . На рис. 8.11, б показано изменение концентрации акцепторных и донорных атомов при перемещении вдоль оси х, перпендикулярной плоскости ММ. В точке О, лежащей в этой плоскости, скачкообразно падает до нуля, Л д скачкообразно увеличивается от нуля до N..  [c.219]

Рис. 8.26. Возникновение поверхностных состояний а — обрыв периодического потепци -ала решетки у поверхности кристалла б — поверхностные состоя -ния, возникающие вследствие обрыва решетки а —чужеродные атомы М на поверхности г — типы поверхностных состояний ( д — донорные. Ел — акцепторные. р— рекомбин. -цпонные) Рис. 8.26. Возникновение <a href="/info/16522">поверхностных состояний</a> а — обрыв периодического потепци -ала решетки у <a href="/info/216532">поверхности кристалла</a> б — поверхностные состоя -ния, возникающие вследствие обрыва решетки а —чужеродные атомы М на поверхности г — типы <a href="/info/16522">поверхностных состояний</a> ( д — донорные. Ел — акцепторные. р— рекомбин. -цпонные)
Наглядное представление о возникновении поверхностных состояний можно получить 3 рзссмотрення связей, действующих между атомами в объеме и на поверхности кристалла. На рис. 8.27 изображена плоская модель решетки германия. Атом в объеме кристалла окружен четырьмя ближайшими соседями, связь с которыми, осуществляется путем попарного обобществления валентных элект-. ронов. У атомов, расположенных на свободной поверхности А А, одна валентная связь оказывается разорванной, а электронная пара неукомплектованной. Стремясь укомплектовать эту пару и заполнить свою внешнюю оболочку до устойчивой восьмиэлектронной конфигурации, поверхностные атомы ведут себя как типичные акцепторы, которым в запрещенной зоне соответствуют акцепторные уровни Eg (рис. 8.26, б). Электроны, попавшие на эти уровни из валентной зоны, не проникают в глубь кисталла и локализуются на расстоянии порядка постоянной решетки от поверхности. В валентной зоне возникают при этом дырки, а в поверхностном слое полупроводника — дырочная проводимость.  [c.241]

ДОНОРНАЯ ПРЙМЕСЬ — примесь в полупроводнике, ионизация к-рой приводит к переходу электрона в зону проводимости или на уровень акцепторной при-леси. Типичный пример Д. п.— примеси элементов V группы (Р, As, Sb, Bi) в элементарных иолупровод-никах IV группы — Се и Si. В сложных полупроводниках роль Д. п. могут играть атомы элсктроположпт. элементов (Си, Zn, d, Hg и др.), избыточные по отношению 1ч составу, соответствующему стехиометрич. ф-ле полупроводника.  [c.15]

В диффузионных П. д. переход создаётся диффузией донорных (или акцепторных) атомов в ПОРТО, 1. Схематическое изобра- лупроводник с проводи-жение полупроводникового де- гостью р- ИЛИ л-типов.  [c.49]


Смотреть страницы где упоминается термин Атомы акцепторные : [c.53]    [c.52]    [c.198]    [c.389]    [c.304]    [c.247]    [c.656]    [c.71]    [c.169]    [c.58]    [c.579]    [c.579]    [c.78]    [c.79]    [c.38]    [c.116]   
Атомная физика (1989) -- [ c.351 ]



ПОИСК



Мир атома



© 2025 Mash-xxl.info Реклама на сайте