Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Классическая динамика как динамика корреляций

Классическая динамика как динамика корреляций  [c.128]

В разд. 3.6—3.8 было показано, что квантовомеханические системы, если использовать для их описания функции Вигнера, можно рассматривать такими же методами, как и классические. Проследим эту идею дальше и покажем, что и в квантовой механике также можно построить динамику корреляций. Она имеет такую же структуру, как и в разд. 14.2, однако при конкретной реализации этой структуры появляются существенные различия.  [c.133]


Подведем итоги. Мы убедились в том, что с точки зрения общей теории неравновесных процессов стандартный метод временных функций Грина основан на граничном условии полного ослабления корреляций в отдаленном прошлом, которое эквивалентно граничному условию Боголюбова к цепочке уравнений для классических функций распределения или квантовых многочастичных матриц плотности. Как мы знаем, при таком выборе граничного условия корреляционные эффекты проявляют себя как эффекты памяти в кинетических уравнениях. Поэтому марковские кинетические уравнения, получаемые в стандартном методе функций Грина, применимы только к системам, которые достаточно хорошо описываются в рамках модели слабо взаимодействующих квазичастиц. Для систем с сильными корреляциями нужно вводить новые граничные условия, учитывающие динамику корреляций в системе. Обратим внимание на то, что предельные значения (6.3.108) временных функций Грина выражаются через квази-равновесные функции G , в которых усреднение производится со статистическим оператором зависящим от времени через макроскопические наблюдаемые Р У. Таким образом, соотношение (6.3.108) показывает, что в общем случае предельные гриновские функции зависят от макроскопической эволюции системы. Иначе говоря, уравнения движения для временных гриновских функций должны рассматриваться совместно с уравнениями переноса для Р У. В параграфе 4.5 первого тома был рассмотрен пример такого объединения квантовой кинетики с теорией макроскопических процессов в методе неравновесного статистического оператора. Соответствующая техника в методе функций Грина пока не разработана, так что читателю предоставляется возможность внести свой вклад в решение этой проблемы.  [c.62]

При Ь = = О уравнения (1.13)-(1.15) переходят в классические уравнения для изотропных скалярных полей, описывающие динамику корреляций о , X и для незаряженных пассивных примесей. Члены, пропорциональные 6 и 6°, обусловлены дрейфом заряженных частиц в собственном электрическом поле. Указанные уравнения незамкнуты они содержат тройные корреляции, для аппроксимации которых необходимы специальные модели. Па заключительной стадии вырождения, когда ими можно пренебречь, (1.13)-(1.15) образуют систему параболических уравнений относительно о , х и  [c.626]


Приближение, которое использовалось при выводе интеграла столкновений для неидеальной квантовой системы, соответствует приближению, сделанному в разделе 3.3.5 при выводе классического уравнения Энскога. Как мы уже отмечали, обобщенная теория Энскога фактически основана на двух предположениях а) столкновения описываются в терминах двухчастичной динамики, б) наиболее важные многочастичные корреляции обусловлены законом сохранения энергии. Таким образом, кинетиче-  [c.295]

Вскоре после статьи Ван Хова появилась работа Браута и Пригожииа, открывшая многочисленную серию работ, выполненных так называемой брюссельской школой . При этом основная идея заключалась в введении фурье-разложения функции распределения и последовательном применении переменных угол—действие (в классической механике). Такое представление продемонстрировало роль раздельного анализа различных типов корреляций (т. е. динамики корреляций). При этом также в асимптотическом пределе Я О, t оо (Я 4 — конечная величина) было получено необратимое основное кинетическое уравнение для iV-частичной функции распределения по импульсам (играющей роль вакуума в этом представлении)  [c.217]

Переходя к кинетической теории плотных квантовых систем с сильным взаимодействием между частицами, мы должны иметь в виду, что динамику многочастичных корреляций и эволюцию одночастичной матрицы плотности теперь приходится описывать, по существу, на одной и той же шкале времени ). Если в начальном состоянии отсутствуют корреляции между частицами, то для восстановления всех долгоживущих корреляций требуется значительное время. Иначе говоря, квантовая кинетическая теория, основанная на граничном условии, которое вводится с помощью квазиравно-весного статистического оператора (4.1.32), будет существенно немарковскощ т. е. в кинетическом уравнении для одночастичной матрицы плотности важную роль будут играть эффекты памяти. Решать немарковские кинетические уравнения очень сложно. В большинстве задач эффекты памяти удается учесть только в первом приближении, т. е., фактически, для слабо неидеальных систем ). Поэтому кажется разумным попытаться сохранить марковский вид уравнений эволюции, расширив набор базисных динамических переменных. В контексте классической кинетической теории эта идея уже обсуждалась в разделе 3.3.4. Теперь мы хотим распространить ее на квантовые системы.  [c.288]


Смотреть страницы где упоминается термин Классическая динамика как динамика корреляций : [c.139]   
Смотреть главы в:

Равновесная и неравновесная статистическая механика Т.2  -> Классическая динамика как динамика корреляций



ПОИСК



Газ классический

ДИНАМИКА КОРРЕЛЯЦИЙ

Динамика классическая

Корреляция



© 2025 Mash-xxl.info Реклама на сайте