Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость сферических оболочек при действии внешнего давления

Рассматриваемый здесь особый случай имеет место, в частности, в задаче об устойчивости сферической оболочки под действием внешнего давления. При этом 7 = 7 = -qR/2, / =/ 2 =/ и критическое внешнее давление (см. [37])  [c.58]

Тонкостенный цилиндр при осевом сжатии также способен потерять устойчивость. При этом цилиндрическая оболочка приобретает несимметричную складчатость, а число образующихся в поперечном направлении складок определяется отношением радиуса оболочки к ее толщине. Сходная картина наблюдается при скручивании цилиндрической оболочки. Цилиндрические, конические, сферические оболочки теряют устойчивость также и под действием внешнего давления.  [c.120]


Рассмотрим некоторые задачи об устойчивости сферических оболочек при совместном действии равномерного всестороннего давления д и локальных осесимметричных нагрузок. Во всех рассмотренных ниже задачах кривые взаимодействия оказываются вогнутыми. Как и в случае цилиндрической оболочки, это объясняется нелинейной зависимостью докритического состояния оболочки от внешнего давления и учетом докритического искривления образующей оболочки.  [c.278]

Исследованию устойчивости жестко защемленных по краю пологих сферических оболочек под действием равномерного внешнего давления, выполненных из материала, ползучесть которого описывается соотношениями линейной вязкоупругости, посвящены работы [11, 55, 56, 80, 81, 85, 89, 92]. Поскольку материал обладает ограниченной ползучестью, задача устойчивости может ставиться на бесконечном интервале времени. В ряде указанных работ определяется значение длительной критической нагрузки. Разрешающие уравнения строятся с учетом нелинейности геометрических соотношений. Время, при котором оболочка теряет устойчивость под действием давлений, превышающих длительное критическое, определяется моментом резкого возрастания скорости осесимметричного прогиба (хлопка).  [c.9]

Изгиб и устойчивость пологих сферических оболочек, ползучесть материала которых описана нелинейными соотношениями, рассмотрен в работе [76]. Теории ползучести сформулированы с использованием законов течения и старения. Исследования проводятся на основе вариационных уравнений, учитывающих геометрическую нелинейность, в которых варьированию, кроме напряжений и перемещений (или их скоростей), подлежат также их интенсивности. Соотношения ползучести для оболочки упрощаются за счет осреднения интенсивностей деформаций и напряжений по толщине. При исследовании устойчивости применяется следующий подход. Полагается, что под действием внешнего давления в процессе ползучести оболочка изменят свою форму и вы-  [c.9]

Анализу изгиба и устойчивости осесимметрично нагруженных пологих оболочек вращения при ползучести посвящено относительно небольшое число работ, касающихся в основном сферических оболочек постоянной толщины под действием равномерного внешнего давления. При исследовании устойчивости оболочек такого класса не обязательно учитывать начальные несовершенства срединной поверхности. При этом имеются в виду неосесимметричные несовершенства, так как учет осесимметричных начальных прогибов, формально соответствующий анализу деформирования осесимметричной оболочки новой формы, не меняет существа подхода к решению задачи.  [c.8]


Исследуем изгиб и устойчивость при ползучести оболочек, выполненных из нейлона типа 6/6 и находящихся под действием равномерного внешнего давления при нормальной температуре. Выбор материала обусловлен наличием в работе [82] результатов теоретических и экспериментальных исследований ползучести нейлоновых шарнирно-опертых сферических оболочек, а также кривых ползучести. Модуль упругости материала Е = = 0,035-10 МПа, коэффициент Пуассона =0,3.  [c.55]

Применим вариационный принцип В к исследованию потери устойчивости выпуклой оболочки под внешним давлением. Начнем со сферической оболочки. Пусть сферическая оболочка с произвольным краем жестко закреплена вдоль края и находится под действием равномерного внешнего давления р. Пусть при этом давлении оболочка теряет устойчивость и начинает выпучиваться по некоторой области О, ограниченной кривой у. Согласно вариа-  [c.79]

Тонкие искривленные оболочки постоянной толщины, ограниченные двумя параллельными поверхностями вращения, являются распространенным элементом инженерных конструкций. В приложениях первостепенное значение имеют достаточно жесткие искривленные металлические оболочки, в которых боковые смещения точек срединной поверхности, т. е. прогибы оболочки при ее деформировании, остаются малыми по сравнению с толщиной оболочки. Устойчивые состояния равновесия напряжений в таких оболочках из упругого материала, нагруженных осесимметрично расположенными внешними силами, в особенности в цилиндрических и сферических оболочках, находящихся под действием равномерного давления газа или жидкости или сил, равномерно распределенных вдоль параллельных кругов, всесторонне исследованы довольно простыми средствами ).  [c.817]

НИЙ ). Л. С. Лейбензон получил решения задач устойчивости для упругих сферической и цилиндрической оболочек, находящихся под действием внутреннего и внешнего давлений. В этих случаях исходное невозмущенное состояние является неоднородным. При асимптотических разложениях решений, полученных на основе подхода Лейбензона — Ишлинского, первый член разложения для критической силы совпадает со значением критической силы, полученной на основе гипотез Кирхгофа — Лява.  [c.194]

Пологий сферический купол из железобетона под действием внешнего давления рассматривал Г. С. Григорян [43]. Арматура считается упругой, ползучесть бетона описывается линеййой наследственной теорией Маслова — Арутюняна. Уравнения для прогибов с учетом геометрической нелинейности исследуются на устойчивость, и определяется максимальное значение нагрузки, при которой оболочка устойчива на бесконечном интервале времени. Пологая сферическая оболочка из линейного вязкоупругого материала под действием внешнего давления с учетом геометрической нелинейности рассматривалась в работах [114, 200, 249, 278, 300]. На основе анализа роста прогибов определялось критическое время про-щелкйвания.  [c.253]

ДЛЯ деформаций. Существо дела здесь состоит в следующем. Пусть, к примеру, на оболочку типа сферического купола действует постоянное внешнее давление. За счет ползучести прогибы оболочки растут, но скорость этого роста затухает, и этот процесс деформирования до некоторых значений нагрузок будет устойчивым на бесконечном интервале времени по отндшению к малым возмущениям. Верхнйя граница таких нагрузок будет длительной критической нагрузкой. При больших значениях нагрузки несмотря на затухание скоростей деформации за конечное время могут накопиться достаточно большие перемещения, оболочка станет более пологой и произойдет ее прощелкивание. Для таких значений нагрузки становится правомерным определение критического времени в условиях ползучести как времени, когда произойдет смена форм равновесия.  [c.253]



Смотреть страницы где упоминается термин Устойчивость сферических оболочек при действии внешнего давления : [c.155]    [c.352]    [c.366]   
Смотреть главы в:

Неклассическая теория оболочек и ее приложение к решению инженерных задач  -> Устойчивость сферических оболочек при действии внешнего давления



ПОИСК



1— Устойчивость под внешним давлением

Давление внешнее

Действие внешнего давления

Оболочка Устойчивость

Оболочка сферическая

Оболочки вращения Определение сферические под действием внешнего давления — Расчет на устойчивость

Оболочки сферические под действием внешнего давления - Расчет на устойчивость

Оболочки сферические при внешнем

Сферические оболочки под внешним давлением

Устойчивость сферической оболочки

Устойчивость сферической оболочки под действием внешнего равномерно распределенного давления



© 2025 Mash-xxl.info Реклама на сайте