Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Образование и развитие усталостных повреждений металла

Образование и развитие усталостных повреждений металла  [c.7]

Книга полезна студентам и аспирантам, поскольку в ней на основе современных принципов научного направления Синергетика, описывающего эволюцию открытых систем с позиций неравновесной термодинамики, обобщены представления о закономерности развития трещин в металлах. Наконец, книга может быть полезна для общего образования людей, которые не связаны непосредственно с анализом процессов разрушения, но хотят составить свое представление об уровне обеспечения их безопасности полетов на ВС, в которых допускаются такие повреждения, как распространяющиеся усталостные трещины, но предусмотрено их своевременное выявление до достижения элемента конструкции предельного состояния.  [c.17]


Таким образом, наличие округлых, сильно развитых в ширину трещин является характерной особенностью термической усталости металла в окислительной среде. При термической усталости в нейтральной среде должны развиваться типичные усталостные повреждения без образования полостей.  [c.134]

Коррозионная усталость. Это процесс постепенного накопления повреждений материала под действием переменных напряжений и коррозионно-активных сред. Образование и развитие усталостных трещин сопровождается проникновением коррозионной среды в эти трещины и облегчает разрушение. Этому виду разрушения подвержены практически любые конструкционные материалы на основе железа, алюминия, титана, меди и других металлов. Особая опасность коррозионно-усталостного разрушения состоит в том, что оно может проходить практически в любых, в том числе таких слабых коррозионных средах, как влажный воздух, газы, влажные машинные масла и др. Поэтому коррозионная усталость металлов и сплавов наблюдается во всех отраслях техники, прежде всего в энергетической, нефтегазодобывающей, горнорудной промышленности, в морском, наземном и воздушном транспорте.  [c.493]

Под действием переменных напряжений в деталях механизмов и металлоконструкций ПТМ происходит постепенное накопление повреждений. Этот процесс называется усталостью, а способность деталей сопротивляться усталости — циклической прочностью или выносливостью. В начальной стадии накопления циклических повреждений происходят пластические деформации отдельных кристаллов, из которых состоит металл. Эти пластические деформации вызывают перераспределение напряжений, и на поверхности ряда кристаллов возникают линии сдвига. Пластическое деформирование сопровождается упрочнением отдельных зон кристаллов и одновременно разрыхлением структуры в области внутрикристаллических дефектов. Под действием переменных напряжений, превышающих определенный уровень, начинают образовываться из линий сдвига микротрещины. Развиваясь, микротрещины переходят в макротрещины. Последние приводят к уменьшению прочностного сечения детали, и после того как размер трещины достигает предельного значения, наступает хрупкое разрушение детали. Таким образом, процесс усталостного разрушения можно разделить на две стадии [27]. Первая стадия — до начала образования макротрещины, вторая — от момента ее образования до разрушения детали. В настоящее время еще нет достаточно апробированных общих оценок закономерностей распространения трещин в деталях ПТМ сложной конфигурации. В связи с этим расчеты циклической прочности как до образования макротрещин, так и до полного разрушения носят идентичный характер [20]. Известно, что пределы выносливости, определенные по условию образования трещины и по условию оконча тельного разрушения, совпадают при коэффициентах концентрации аа < 2 -Ь 3. При высоких коэффициентах концентрации количество циклов, при которых происходит развитие макротрещины с момента ее образования до разрушения сечения, составляет 70—80 % от общего ресурса детали. Развитие усталостной трещины происходит в результате циклических деформаций в области вершины трещины. Установлено, что в общем случае распространение макротрещины от появления до полного разрушения детали можно разделить на три этапа [27], Первый этап характеризуется малой скоростью распространения трещины вдоль полос скольжения. На втором (основном) этапе трещина растет с примерно постоянной скоростью. На третьем этапе, когда трещина имеет уже большие размеры, скорость роста увеличивается и происходит мгновенное хрупкое разрушение (долом) детали. В то же время экспериментальные и теоретические исследования так же, как и эксплуатационные наблюдения, свидетельствуют о том, что не всегда появление трещины усталости приводит к разрушению детали (образца) [27]. В ряде случаев возникают нераспространяющиеся трещины или трещины с весьма малой скоростью роста. Очевидно, что разработка и использование возможностей уменьшения  [c.121]


Усталость представляет собой процесс постепенного накопления повреждений в металле под действием переменных напряжений, приводящих к образованию и развитию усталостных трещин. Из-за различной ориентировки зерен и блоков, макро- и микродефектов напряжения в металле распределяются неравномерно. При расчетной нагрузке ниже временного сопротивления в отдель-  [c.92]

Сопротивление образованию и развитию трещин малоциклового нагружения в общем случае зависит от циклических свойств металла, режима нагружения и размеров трещин. В работах [1—4] рассмотрены кинетические особенности процессов упругопластического деформирования и деформационные критерии малоциклового разрушения с учетом циклических свойств в связи с анализом условий образования трещин в зонах концентрации напряжений при комнатной температуре. Условия распространения трещин малоциклового разрушения при комнатной температуре с учетом кинетики пластических деформаций в их вершине изучались в работе [5]. В упомянутых работах показано, что долговечность на стадии образования трещин в зонах концентрации напряжений рассчитывается по величинам амплитуд и односторонне накапливав мых местных деформаций с использованием условия линейного суМ мирования квазистатических и усталостных малоцикловых повреждений. Скорости распространения трещин малоциклового нагружения и долговечность на стадии окончательного разрушения вычис ляются по величинам размахов коэффициентов интенсивности деформаций и предельной пластической деформации в вершине трещины.  [c.99]

Напряжения, возникающие в деталях машин в процессе эксплуатации, в большинстве случаев переменны во времени, причем они часто являются случайными функциями времени. Если уровень переменных напряжений превышает определенный предел, то в материале детали протекает процесс постепенного накопления повреждений, приводящий к образованию трещины, ее развитию и окончательному разрушению детали. Этот процесс условно называют усталостью металла, а соответствующее разрушение — усталостным.  [c.5]

Это процесс постепенного накопления повреждений материала под воздействием переменных напряжений и коррозионно-активных сред, приводящий к изменению свойств, образованию коррозионно-усталостных трещин, их развитию и разрушению изделия. Этому виду разрушения в определенных условиях могут быть подвержены все конструкционные материалы на основе железа, алюминия, титана, меди и других металлов. Опасность коррозионно-усталостного разрушения заключается в том, что оно протекает практически в любых коррозионных средах, включая такие относительно слабые среды, как влажный воздух и газы, спирты, влажные машинные масла, не говоря уже о водных растворах солей и кислот, в которых происходит резкое, иногда катастрофическое снижение предела выносливости металлов. Поэтому коррозионная усталость металлов и сплавов наблюдается во всех отраслях техники, но наиболее она распространена в химической, энергетической, нефтегазодобывающей, горнорудной промышленности, в транспортной технике. Коррозионно-усталостному разрушению подвергаются стальные канаты, элементы бурильной колонны, лопатки компрессоров и турбин, трубопроводы, гребные винты и валы, корпуса кораблей, обшивки самолетов, детали насосов, рессоры, пружины, крепежные элементы, металлические инженерные сооружения и пр. Потеря гребного винта современным крупнотоннажным судном в открытом океане приносиГ убытки, исчисляемые миллионами рублей.  [c.11]

В соответствии с др. теориями, физич. природа процесса усталости отлична от природы статич. наклепа. Образование микроскопич. трещин при циклич. нагрузках рассматривается в этом случае как процесс постепенного ослабления межатомных связей и развития необратимых повреждений в определенных участках структуры (напр., на границах мозаичных блоков). Модель неоднородного упруго-пластич. деформирования конгломерата случайно ориентированных кристаллов послужила основой для теорий усталостного процесса как в детерминированной, так и в вероятностной трактовке. При напряжениях, не превосходящих предела текучести металла, усталостные процессы связаны лишь с явлениями местной пластич. деформации, не проявляющейся макроскопически, и рассматриваются как квази-упругие. Числа циклов, необходимые для усталостного разрушения при таких уровнях напряженности, измеряются сотнями тыс. и млн. При напряжениях, превосходящих предел текучести, явления усталости сопровождаются макросконическими пластич. деформациями и рассматриваются как упруго-пластические. Число циклов, необходимое для разрушения в этой области, измеряется сотнями и тысячами. В зависимости от условий протекания процесс У. может также сопровождаться фазовыми превращениями в металлах. Так, при новы-шенных темп-рах происходит выделение и перераспределение упрочняющих фаз при переменном нагружении, что иногда приводит к ускоренному ослаблению границ зерен, и при длительной работе трещины усталостного разрушения возникают в этом случае на границах зерен. Физико-химич. превращения в структуре наблюдались также и при комнатной темп-ре при циклич. напряжениях выше предела У. Стадия усталостного разрушения, связанная с развитием трещины, возникает на разных этапах действия переменных напряжений. При большой структурной неоднородности, свойственной, например, чугунам, в местах включений графита система микротрещин возникает задолго до развития магистральной трещины, приводящей к окончательному усталостному разрушению. Для структурно более- однородных металлов, напр, конструкционных сталей, образованию отдельных микро-, а потом макротрещин предшествуют длительно накапливающиеся изменения, и трещины возникают на относительно поздних стадиях, развиваясь с нарастающей скоростью.  [c.383]


Кроме значений r i, (То 2 при выборе марки стали учитывают ударную вязкость, сопротивление износу, прокаливаемость. Высокая циклическая прочность стали достигается в том случае, если она оказывает высокое сопротивление зарождению трещин усталости и их развитию. Механизм зарождения усталостной треш ины связан с развитием и накоплением в поверхностном слое микропластической деформации. Он основан на движении дислокаций, возможность перемещения которых при напряжениях ниже предела текучести обусловлена анизотропией кристаллов и их случайной ориентацией. В отдельных кристаллах при небольших средних напряжениях могут возникать напряжения, достаточные для. перемещения слабозакрепленных дислокаций. Кроме того, для тонких поверхностных слоев (в 1 - 2 зерна) характерно низкое напряжение работы источников дислокаций Франка — Рида. По этим причинам в мягких (отожженных) металлах уже на ранней стадии нагружения (1 - 5 % от общего числа циклов до разрушения) наблюдаются ранняя микропласти-ческая деформация и повреждение тонких поверхностных слоев. Микро-пластическая деформация проявляется в образовании на поверхности линий сдвига (скольжения), плотность которых растет с увеличением числа  [c.273]

Пароводяная коррозия, очевидно, протекает в условиях обычной, многоцикловой усталости, при более высокой частоте, но меньшей амплитуде циклического нагружения, например за счет флуктуаций топочного факела пли гидродинамических нульсаци среды, но без явной дестабилизации пузырькового кииения с переходом в нестабильный пленочный режим. По аналогии с котлами СКД флуктуации топочного факела здесь можно рассматривать как гармоники с периодом от 2 до 20 с при амплитуде 10—40 С [79], Очевидно, аналогичное термоциклическое нагружение может протекать и в условиях случайных пульсаций температур [84], В этих условиях с учетом меньшей в сравнении с водородной атакой иптепсквпостн образования и скорости диффузии водорода в металл окисная пленка выполняет защитные функции определенное время (число циклов), прежде чем будет исчерпана ее усталостная прочность. Затем происходит повреждение существующего и образование нового окисного слоя, так что очаг коррозионного поражения оказывается заполненным слоистым магнетитом. Пароводяная коррозия может перейти в водородное охрупчивание металла Екранной трубы при совместном или раздельном действии таких факторов, как снижение частоты и повышение амплитуды термоциклического нагружения. Другая возможность такого перехода—повыщение температуры локального участка трубы под многослойным магнетитом, его растрескивание, непосредственный контакт среды со сталью, развитие водородной атаки (см. 2.3). В результате получается комбинированный характер повреждения со стороны внутренней поверхности — от пароводяной коррозии, в оставшейся части стенки трубы — хрупкий долом.  [c.90]


Смотреть страницы где упоминается термин Образование и развитие усталостных повреждений металла : [c.119]    [c.124]    [c.47]    [c.106]   
Смотреть главы в:

Расчеты на прочность при напряжениях переменных во времени (БР)  -> Образование и развитие усталостных повреждений металла



ПОИСК



Повреждени

Повреждени усталостное

Повреждение

Повреждения усталостные

Усталостная



© 2025 Mash-xxl.info Реклама на сайте