Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет на прочность элементов тонкостенных конструкций

РАСЧЕТ НА ПРОЧНОСТЬ ЭЛЕМЕНТОВ ТОНКОСТЕННЫХ КОНСТРУКЦИЙ  [c.414]

На основе данных о малоцикловой прочности элементов конструкций (трубы магистральных газо- и нефтепроводов, компенсаторы и металлорукава) проведена оценка возможности использования запасов прочности и расчетных характеристик, регламентируемых существующими нормами расчета на прочность элементов реакторов, парогенераторов, сосудов и трубопроводов атомных электростанций. Показано, что для всех испытанных элементов конструкций нормативная кривая допускаемых циклических деформаций дает оценку, идущую в запас прочности. При этом для тонкостенных элементов конструкций (какими являются гибкие металлорукава и аналогичные по параметрам гофрированной оболочки компенсаторы) рекомендуемая нормами кривая является консервативной. Обоснована возможность повышения допускаемых циклических деформаций в такого типа конструкциях.  [c.276]


При расчетах на прочность к схеме тонкостенных стержней сводятся многие элементы машиностроительных конструкций. Это — прежде всего, подкрепляющие элементы (рис. 368) оболочек самолетов и ракет. К схеме тонкостенных стержней сводятся составляю-  [c.324]

В учебнике приведены сведения из механики деформируемых тел, основные разделы статики и устойчивости элементов тонкостенных конструкций, методы расчета на прочность различных отсеков ракет. Большое внимание уделено численным методам расчета с использованием ЭВМ. Кроме того, рассматриваются простые приближенные методы, позволяющие быстро выполнить проектировочные расчеты при эскизном проектировании.  [c.2]

При расчете баков ракет широко используются результаты экспериментальных исследований. Это касается прежде всего расчетов на устойчивость. Критические напряжения потери устойчивости тонкостенных элементов определяют преимущественно опытным путем. В этой главе рассмотрена приближенная методика расчета на устойчивость основного силового элемента конструкции — цилиндрических обечаек несущих баков. Учитывается влияние внутреннего давления, неравномерности распределения напряжений по сечению. Используются данные экспериментов, служащие для уточнения теоретических формул. Приведена последовательность определения численных значений критических нагрузок для различных подкрепленных и непод-крепленных конструкций баков.. Рассмотрены расчеты на прочность цилиндрических обечаек и днищ разной формы, а также сфероидальных и торообразных баков.  [c.291]

При расчете по разрушающим, нагрузкам в основу кладут то значение нагрузки, при котором конструкция теряет несущую способность, разрушается Элементы тонкостенных конструкций, работающие на сжатие, обычно разрушаются в результате потери устойчивости, а элементы, работающие на растяжение, — вследствие достижения напряжениями предела прочности материала.  [c.359]

В заключение отметим, что рассмотренные здесь критерии прочности композитного материала пригодны для использования при кратковременном нагружении конструкции. При расчетах на прочность тонкостенных композитных конструктивных элементов, подверженных длительному воздействию нагрузок, должны использоваться критерии прочности, позволяющие учитывать влияние фактора времени. Такие критерии разработаны в [176, 182, 199, 264, 280].  [c.38]

В книге изложены методы расчета на прочность и жесткость основных элементов машиностроительных конструкций — тонкостенных стержней, толстостенных цилиндров, дисков, колец, оболочек.  [c.2]


Большое значение для анализа напряженного и деформированного состояния подкрепленных и гладких оболочек типа фюзеляжа имеют работы В. 3. Власова по стесненному кручению тонкостенных конструкций открытого профиля и технической теории оболочек. На основании полученных им общих закономерностей были решены задачи расчета на прочность фюзеляжа с большим вырезом, приближенного учета влияния упругости элементов силового набора и др. Из работ ЦАГИ здесь следует отметить исследования Г. Н. Рудых.  [c.300]

Отдельная глава посвящена расчету элементов конструкций с учетом ползучести расширен по сравнению с другими сборниками задач состав задач по вопросам усталостной прочности включен параграф, посвященный расчету тонкостенных стержней замкнутого профиля на стесненное кручение. В отдельные параграфы выделены вопросы нелинейного деформирования элементов конструкций. В главе Устойчивость и продольно-поперечный изгиб стержней помещены задачи, которые помогут студентам приобрести не только навыки расчетов на устойчивость, но и уяснить понятие критического состояния системы и применяемого в исследовании устойчивости метода Эйлера. Креме того, решение этих задач подготовит студентов к более успешному освоению курса устойчивости сооружений.  [c.3]

В курсе сопротивления материалов изучаются основы расчета элементов конструкций на прочность, жесткость и устойчивость. Несмотря на чрезвычайное разнообразие форм элементов конструкций (деталей машин, аппаратов, приборов и сооружений), с большей или меньшей степенью точности каждый из них для целей расчета можно рассматривать либо как брус (прямой или кривой), либо как пластинку или оболочку, либо как массивное тело. В общем, сравнительно кратком, курсе сопротивления материалов, программе которого соответствует настоящее пособие, рассматриваются почти исключительно расчеты прямого бруса. В более полных курсах рассматривается также расчет кривых брусьев, тонкостенных оболочек, толстостенных труб, гибких нитей, а в отдельных случаях и некоторые другие вопросы.  [c.5]

В настоящей книге рассматриваются основные принципы и методы расчета элементов конструкций на прочность, жесткость и устойчивость приводятся данные для расчета стержней на растяжение-сжатие, сдвиг, кручение, для расчета статически определимых и статически неопределимых балок и рам рассматривается работа стержней, находящихся в условиях сложного сопротивления, кривых брусьев, толстостенных труб, тонкостенных стержней, пластинок и оболочек.  [c.8]

Так, например, в строительной механике сооружений большое место занимают вопросы раскрытия статической неопределенности рам и стержневых систем, расчета балок и плит, лежащих на упругом основании, и т, д. В строительной механике самолета большое внимание уделяется вопросам устойчивости подкрепленных элементов оболочек и других тонкостенных элементов корпуса и крыльев и т. д. Словом, строительная механика любого профиля может рассматриваться как механика конкретных деформируемых конструкций и машин, привязанных к определенной отрасли техники или строительства, и ее задачей является определение напряжений и деформаций в моделях (расчетных схемах) специальных конструкций. Строительная механика служит основой для дисциплин, изучающих прочность реальных конструкций и машин (рис. 1.1). Их можно объединить общим названием Проектирование и прочность . Задача этих дисциплин — построение расчетной модели (расчетной схемы), используемой в строительной механике, и оценка прочности конструкций.  [c.6]

В 30-е годы в ЦАГИ были начаты систематические экспериментальные исследования прочности отдельных конструктивных элементов, главным образом устойчивости профилей и панелей. Эти исследования были направлены не только на получение определенных характеристик прочности и устойчивости элементов, но и на изыскание наиболее рациональных их конструкций. Здесь были получены существенные результаты в работах А. А. Белоуса, К. А. Минаева, Г. А. Олейникова. В частности, в ряде работ К. А. Минаева был дан практический метод расчета тонкостенных профилей и панелей на общую и местную потерю устойчивости. В работе Г. А. Олейникова получены результаты расчета плоских и цилиндрических подкрепленных панелей в закритической области и даны формулы для определения редукционных коэффициентов.  [c.301]


В книге рассмотрен широкий круг задач по расчету оболочек вращения и элементов тонкостенных конструкций на прочность, жесткость и устойчивость прн различных видах силового воздействия. Многие из этих задач возникли за последние годы в связи с развитием новой техники. К числу таких задач относятся, например, расчеты всевозможных торовых оболочек, нагруженных внутренним давлением, сферических оболочек, нагруженных локальными нагрузками, н. т. д.  [c.2]

В практических расчетах элементов конструкций на прочность и устойчивость широко применяются так называемые прикладные теории оболочек. При их создании обычно принимают дополнительные упрощения, которые позволяют получить простые аналитические решения задач. Однако эти теории могут быть использованы для расчета только определенного класса конструкций. Например, рассмотренная в этой главе теория краевого эффекта применяется для определения напряжений лишь на узких участках оболочек, близких к цилиндрическим. Теория пологих оболочек используется при расчете элементов, геометрия которых мало отличается от плоских пластин. С помощью полубезмомент-ной теории удается получить простые формулы для расчета тонкостенного цилиндра, когда изменяемость деформированного состояния по окружности существенно выше, чем вдоль образующей. Теория мягких оболочек применяется при расчете конструкций весьма малой толщины, в тех случаях когда можно не учитывать изгибающие моменты.  [c.146]

Так как сечение тонкостенных пространственных конструкций имеет небольшое армирование, то для ориентировочных расчетов в первом приближении можно принять х—0,55 ho. Полное исчерпание несущей способности внецентренно сжатых (растянутых) элементов может иметь место только в том случае, если они взаимодействуют с более прочными окаймляющими их конструкциями. Например, несущая способность полки оболочки может быть исчерпана только в том случае, если она опирается на достаточно прочный контур, который при воздействии на него предельных для сечений полки нормальных сил распора N p и изгибающих моментов Л1пр не разрушится. Если контур не обладает такой прочностью, то возникновению в плите сил iVnp и моментов УИпр будет предшествовать его разрушение. По-видимому, если отвлечься от несовпадения несущих способностей одной и той же конструкции при различных схемах излома, то в оптимально запроектированной с точки зрения прочности конструкции разрушение различных элементов должно наступать при одной и той же нагрузке, т. е. элементы должны быть равнопрочными. В соответствии со сказанным выше, если прочность криволинейного бруса ниже прочности балок, на которые он опирается, то при возникновении в брусе предельных нормальных сил Л/ р и моментов УИпр балки не разрушатся (рис. 3.2). Наоборот, если балки в рассматриваемом примере не обладают достаточной прочностью, то при возникновении в них предельных моментов и их разрушении несущая способность бруса не будет исчерпана и действующие в нем усилия будут меньше предельных. При равнопрочности элементов момент разрушения балок должен совпадать с моментом исчерпания несущей способности бруса. Оценка несущей способности конструкций с учетом взаимного влияния прочности отдельных элементов является, несомненно, приближенной. Более точных результатов можно ожидать при учете не только взаимного влияния прочностей отдельных элементов, но и при учете влияния их деформативности. Если балку подкреплять подвесками с одним и тем же сечением (одной и той же прочностью), но с разной длиной, то очевидно, что несущая способность конструкции при увеличении длины подвески до некоторой оптимальной величины может увеличиваться (рис. 3.2, д). Таким образом, при оценке несущей способности конструкции  [c.176]


Смотреть страницы где упоминается термин Расчет на прочность элементов тонкостенных конструкций : [c.630]    [c.5]    [c.372]   
Смотреть главы в:

Теплоэнергетика и теплотехника Общие вопросы Книга1  -> Расчет на прочность элементов тонкостенных конструкций



ПОИСК



Конструкции тонкостенные

ПРОЧНОСТЬ ТОНКОСТЕННЫХ КОНСТРУКЦИЙ

Прочность конструкции

Расчет тонкостенных конструкций

Тонкостенный элемент

Элемент конструкции

Элементы Расчет



© 2025 Mash-xxl.info Реклама на сайте