Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диссипативные системы с конечным числом степеней свободы

ДИССИПАТИВНЫЕ СИСТЕМЫ С КОНЕЧНЫМ ЧИСЛОМ СТЕПЕНЕЙ СВОБОДЫ  [c.108]

Уравнения движения диссипативной системы с конечным числом степеней свободы Под действием гармонических сил можно записать в форме  [c.108]

Матрица коэффициентов демпфирования В без ограничения общности может рассматриваться как симметричная. Среди диссипативных систем с конечным числом степеней свободы различают системы с полной и неполной диссипацией, К первым относят системы, для которых диссипативная функция Релея R = 1/2 (Bq, q) является положительной (R > 0) матрица В при этом является положительно определенной. Для систем с неполной диссипацией функция Релея является неотрицательной, а матрица В — неотрицательно определенней.  [c.108]


Использование главных нормальных координат. Решение задачи об установившихся вынужденных колебаниях в диссипативных системах с конечным числом степеней свободы может быть получено при введении главных нормальных координат  [c.108]

КОЛЕБАНИЯ ЛИНЕЙНОЙ ДИССИПАТИВНОЙ СИСТЕМЫ С КОНЕЧНЫМ ЧИСЛОМ СТЕПЕНЕЙ СВОБОДЫ  [c.325]

Вынужденные колебания. Решение задачи о вынужденных колебаниях в диссипативных системах с конечным числом степеней свободы может быть получено с использованием нормальных координат недиссипативной системы. В случае, если матрица В является линейной комбинацией матриц А и С, это решение будет точным. При произвольной матрице В придется пренебречь, как указано выше, недиагональными элементами преобразованной матрицы демпфирования.  [c.326]

Широкий круг задач образуют динамические системы с конечным числом степеней свободы с нелинейными восстанавливающими и диссипативными силами при случайных внешних воздействиях. К ним, в частности, относятся системы виброзащиты и амортизации с нелинейными характеристиками. Б реальных условиях эксплуатации большинство таких систем испытывает воздействия случайного характера. Случайные динамические процессы возникают практически во всех транспортных средствах (летательные аппараты, наземный транспорт, морские суда) случайную природу имеют сейсмические и акустические воздействия случайные колебания температуры, как правило, сопровождают смену тепловых режимов. Случайные процессы сопровождают технологические операции изготовления конструкций, например при обработке резанием возникают случайные автоколебания.  [c.78]

Теорема. Изолированное положение равновесия консервативной механической системы с конечным числом степеней свободы, в котором потенциальная энергия имеет строгий минимум, становится асимптотически устойчивым при добавлении к системе диссипативных сил с полной диссипацией.  [c.169]

Рассмотрим распространение методов гамильтоновой механики на неконсервативные системы. Здесь ограничимся исследованием диссипативных систем с конечным числом степеней свободы. Укажем случаи, когда удается построить в явном виде обобщенный потенциал и уравнения движения непотенциальных систем привести к гамильтоновой форме  [c.156]


Теоретические исследования их представляют определенные трудности. Предлагается реальные механические системы заменять моделями с конечным числом степеней свободы. Такие модели могут быть представлены сосредоточенными массами и безынерционными связями с конечными значениями показателей жесткости с,-, диссипативными характеристиками /,-.  [c.32]

В статье рассматриваются стопорные режимы в машинном агрегате с электроприводом постоянного тока. Механическая система схематизирована в виде дискретной цепной крутильной системы с конечным числом степеней свободы. Рассмотрены уточненное и упрощенное математические описания упруго-диссипативных свойств соединений. Динамические процессы в приводном двигателе с независимым возбуждением исследованы с учетом типовых САР скорости. При этом рассмотрены наиболее характерные примеры САР с линейными и нелинейными (задержанными) связями. На основе рассмотрения динамических процессов в механической системе и в проводном двигателе получена система дифференциальных уравнений движения с кусочно-постоянными коэффициентами при уточненном математическом описании динамических харак-геристик звеньев. Предложен эффективный численно-аналитический метод интегрирования системы уравнений движения. Рассмотрены возможные упрощения при приближенном исследовании стопорных режимов Получена система приближенных интегральнодифференциальных уравнений стопорного режима, для которой разработан метод отыскания решения в аналитическом виде. Изложенное иллюстрировано общим примером. Библ. Ill назв. Илл. 9.  [c.400]


Смотреть страницы где упоминается термин Диссипативные системы с конечным числом степеней свободы : [c.607]    [c.701]   
Смотреть главы в:

Вибрации в технике Справочник Том 1  -> Диссипативные системы с конечным числом степеней свободы



ПОИСК



Колебания линейной диссипативной системы конечным числом степеней свободы вынужденные

Колебания линейной диссипативной системы с конечным числом степеней свободы (М.М.Ильин)

Система диссипативная

Система с конечным числом степеней

Система с конечным числом степеней свободы

Степени свободы системы

Степень свободы

Степень свободы (число степеней)

Число степеней свободы

Число степеней свободы системы

Число степенен свободы

Число степенной свободы



© 2025 Mash-xxl.info Реклама на сайте