Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Родий-сурьма

Марки Кобальт, марганец, цинк, фосфор, магний Сера, медь, кремний, мышьяк (каждого) Желе- зо Свинец Кадмий, висмут, олово (каждого) Угле- род Сурьма  [c.146]

Рабочий слой сурьмы, наносимый на поверхность детали с целью борьбы с износом в условиях схватывания первого рода, не должен превышать 8—10 жк на сторону.  [c.171]

Палладий Pd Платина Pt Плутоний Ри Празеодим Рг Рений Re Родий Rh Ртуть Hg Рубидий Rb Рутений Ru Самарий Sm Свинец РЬ Селен Se Сера S Серебро Ag Скандий S Стронций Sr Сурьма Sb Таллий Т1 Тантал Та Теллур Те Тербий ТЬ Титан Ti Торий Th Тулий Ти  [c.9]


Платима (Pt). . , Рений (Re). ... Родий (Rh),. . , Ртуть (Н ). ... Рутений (Ru). , Свиней РЬ). . . Серебро (Ag).. . Сурьма (Sb). , . Таллий (Т1). .. Тантал (Та). , , Титан (Ti). . . . Торий (I h). ..  [c.426]

Наиболее типичными для диаграмм первого рода являются сплавы свинца с сурьмой. На примере этих сплавов рассмотрим принцип построения таких диаграмм.  [c.51]

Линейные зависимости такого рода [АТ С ) известны для зернограничной сегрегации фосфора [5, 44, 51—54, 300], сурьмы [14, 24, 31, 44], олова [5, 44]. На рис. 7 приведены примеры, подтверждающие справедливость таких зависимостей для различных примесных элементов в хромоникелевых сталях.  [c.40]

Покрытие благородными металлами. Гальванические покрытия благородными металлами (серебром, золотом, палладием, родием) применяют з приборостроении для защиты контактов от окисления и повышения их износостойкости. Наряду с чистыми металлами применяют покрытия сплавами на основе благородных металлов (золото 4- медь, серебро Н- сурьма .  [c.46]

Олово Палладий Платина Родий Серебро Свинец Сурьма Хром  [c.16]

Анодами при катодном травлении служат свинец, сплав свинца с сурьмой (6—10% 5Ь) или кремнистый чугун (20—24% 81). Плотность тока при анодном и катодном травлении — от 500 А/м и выше. Скорость травления в обоих случаях с повышением плотности тока возрастает. Однако, эта зависимость не строго пропорциональна, и очень часто повышение плотности тока не дает ожидаемого эффекта очистки. Это зависит, главным образом, от рода и состояния окислов на поверхности травящегося металла.  [c.113]

Молекулярная электроника позволяет создать радиосхемы в твердом теле. С помощью электро-активных примесей бора, галлия, алюминия, фосфора, сурьмы, мышьяка и т. п. в кристаллах образуются различные по своим электрическим свойствам зоны, которые выполняют функции сопротивлений, конденсаторов, диодов и транзисторов. Для создания подобных схем необходимо строго дозировать атомы и вводить их в точно намеченные места кристаллической решетки полупроводника. Устройства такого рода чрезвычайно малы по размерам.  [c.6]

Непрозрачные металлические покрытия становятся полупрозрачными и даже прозрачными, если уменьшить их толщину до сотых и тысячных долей микрометра. Например, серебряная пленка заметно пропускает видимый свет при толщине < 0,04 мкм. Полупрозрачные покрытия из таких металлов как хром, никель, родий в спектральном отношении почти нейтральны, тогда как пленки алюминия и серебра имеют синий оттенок, золота и меди — зеленый, сурьмы, — светло-коричневый и т. п. При толщине пленок < 0,005 мкм из золота и серебра получают практически прозрачные электропроводящие покрытия на стекле.  [c.99]


Если расплав германия содержит два рода примесей с разными коэффициентами сегрегации, дающими разный тип проводимости, то при изменении скорости выращивания можно получить кристалл с избытком той или другой примеси. Этим свойством пользуются при получении большого количества р—п-переходов, выращенных в процессе вытягивания одного монокристалла затем монокристалл может быть разрезан на нужное число элементов. Например, вводя в расплав германия примеси сурьмы и галлия (сурьмы в несколько большем количестве, так как она имеет меньший коэффициент сегрегации), и при большой скорости вытягивания получают области кристалла с проводимостью п-типа, при более медленной — р-типа между этими областями создаются р—п-переходы. Эту процедуру можно повторять много раз, т. е. в одном монокристалле можно получить несколько последовательных п и р-областей, разделенных плоскими и параллельными р— -переходами.  [c.175]

Особенностью красок, пигментированных окисью сурьмы, является их способность противостоять не только действию высоких температур, но и распространению пламени. Это свойство объясняется тем, что, несмотря на летучесть, трехокись сурьмы имеет тенденцию восстанавливаться до металла в присутствии органических веществ, в частности, связующих. Кроме того, под воздействием высоких температур трехокись сурьмы может превратиться в стойкую четырехокись, а частично окисляться в пятиокись. Когда пламя устремляется на металлическую поверхность, покрытую такого рода пигментами, происходит следующее явление освободившаяся металлическая сурьма стремится вступить в соединение со связующим, причем образуется пленка антимонидов (сплав), защищающая находящийся под ней металл. Под защитой антимонидов внутренняя кристаллическая структура металла остается без изменений.  [c.272]

Молибден, сурьма, вольфрам, кобальт, кадмий, литий, уран, ванадий, ниобий, титан (1—10)-10-1 Иридий, родий  [c.9]

Диаграмма этого рода соответствует кристаллизации сплавов РЬ—5Ь, 5и—Ъх и др. Построение диаграммы состояния первого рода разберем на примере системы сплавов свинец — сурьма. Общий вид такой диаграммы с кривыми охлаждения изображен на фиг. 22.  [c.63]

Фракционирование встречается и в процессе кристаллизации некоторых металлических сплавов, компоненты которых не могут растворяться в кристаллических решетках друг друга (не образуют твердых растворов). При этом образуются механические смеси, где каждый компонент кристаллизуется самостоятельно и образует собственные зерна. Примером может являться система свинец-сурьма (РЬ-5Ь), а также другие системы, образующие диаграмму состояния сплавов I рода [15]. При искусственном и естественном старении алюминиевьгх сплавов происходит перераспределение атомов меди и образование из них скоплений (зоны Гинье - Престона).  [c.65]

Наконец, перечислим металлы, которые не перешлп в сверхпроводящее состояние вплоть до указанных в скобках температур. Золото (0,05° К), медь (0,05° К), висмут (0,05° К), магнии (0,05° К) и германий (0,05° К) были исследоваиы Кюрти и Симоном [260] кремний (0,073° К), хром (0,082° К), сурьма (0,152° К), вольфрам (0,070° К), бериллий (0,064° К) и родий (0,086° К) исследовались Алексеевским и Мигуновым [315] литий (0,08° К), натрий (0,09° К), калий (0,08° К), барий (0,15° К), иттрий (0,10° К), церий (0,25° К), празеодим (0,25° К), неодим (0,25°К), марганец (0,15° К), палладий (0,10° К), иридий (0,10° К) и платина (0,10° К) изучались Гудменом [316] кобальт (0,06° К), молибден (0,05° К) и серебро (0,05° К) были исследованы Томасом и Мендозой [317].  [c.589]

Для устранения процессов схватывания первого рода в исследуемых сопряженных деталях шасси самолетов ИЛ-12 и ИЛ-14 следует рекомендовать сульфидирование, висмутирование, сурьми-рование, кобальтирование или латунирование поверхностей трения одной из сопряженных деталей. Эти способы, позволяющие полностью устранить процесс схватывания металлов, не ухуд-  [c.130]

Электрорафинирование меди проходит в сульфатных растворах, содержащих до 45 г/л Си, до 180 г/л H2SO4 и до 20 г/л примесей железа, никеля, сурьмы, висмута при плотности тока до 350 A/м . Потенциал анода при этом достигает -+-0,5 В. При таких условиях переход в раствор платины и палладия не превышает 0,3 %, родия 1,5 %. Рутений, осмий и иридий, образующие ограниченные твердые растворы с медью, переходят в раствор в значительных количествах, % (от содержания в анодах) до 70 Ru, до 20 Os, до 15 1г. С целью удаления примесей часть медного электролита выводят на регенерацию с получением катодной меди, медной губки, сульфата никеля и маточного раствора, содержащего до 600 г/л H2SO4. Перешедшие в раствор платиновые металлы концентрируются в маточном растворе, из которого возможно их извлечение цементацией никелевым порошком при 100—105 °С. Извлечение всех платиновых металлов из раствора достигает более 90 % при расходе порошка 10 г/л.  [c.401]


Проникновение водорода можно существенно снизить, если из зоны наводороживания удалить (при их наличии) вещества, способствующие проникновению водорода сероводород, фосфороводо-род, соединения мышьяка, селена, сурьмы, теллура. Действие сероводорода состоит в том, что он тормозит реакции рекомбинации атомарного водорода. На основании изложенного выше предложены новые подходы в создании рецептов износостойких и эффективных фрикционных пластмасс [17].  [c.153]

Рис. 49. Отражение инфракрасных лучей металлами /—серебро 2—золото 5—родий 4—платина 5 вольфрам 5—молибден 7—железо—сталь 5—медь 9—алюминий, полированный анодным способом /О—алюминий полированный //—никель /2—цинк /, —хром / /—сурьма /5—эритемное действие /б—чувствительность человеческого глаза /7—кривая излучения инфракрасной лампы для сушки /б—чувствительность фотографической пластинки, обработанной неоцианином. Соотношение единиц Рис. 49. <a href="/info/550083">Отражение инфракрасных лучей</a> металлами /—серебро 2—золото 5—родий 4—платина 5 вольфрам 5—молибден 7—<a href="/info/473491">железо—сталь</a> 5—медь 9—алюминий, полированный анодным способом /О—алюминий полированный //—никель /2—цинк /, —хром / /—сурьма /5—эритемное действие /б—чувствительность человеческого глаза /7—кривая <a href="/info/12550">излучения инфракрасной</a> лампы для сушки /б—<a href="/info/175869">чувствительность фотографической</a> пластинки, обработанной неоцианином. Соотношение единиц
Фотоэлектронные спектры валентных электронов родия, палладия, серебра и иридия, платины, золота (см. рис. 28) показывают постепенное расщепление формирующейся d-оболочки по мере заполнения 2е-состояния, На рис. 29 показано расщепление глубокой остовной й -оболочки элементов от палладия до ксенона на два пика меньшего для eg (й )-состояния и большего для t2g (d )- o-стояния. На это расщепление заметно не влияет внешнее кристаллическое поле, поскольку палладий, серебро и индий имеют ГЦК структуру К = 12), кадмий — плотную гексагональную К = 12),. олово — искаженную ОЦК (/С = 4 -(- 2), сурьма — простую гексагональную (/С = 3), теллур — ромбическую (К = 2), но совер шенно разное окружение атомов в их решетках не изменяет характер двугорбого d-пика. Глубокое расщепление 5d -oбoлoчки на (d )-  [c.58]

РУбИЛИЙ СТРОНЦИЙ ИТТРИЙ ЦИРНОИИЙ НИОБИЙ МОЛИБДЕН ТЕХНЕЦИЙ РУТЕНИЙ РОДИЙ ПАЛЛАДИЙ СЕРЕБРО КАДМИЙ ИНДИЙ одово СУРЬМА ТЕЛЛУР иод КСЕНОН  [c.49]

Сплав железа с кремнием (14—1б7о Высокохромистые сплавы (выше 27% Сг). Стеллит, золото, платина, эмаль Те же и, кроме того, алюминий, хромоникелевые стали, хромистая сталь, свинец Железокремнистый сплав (выше 16% 81), хромистые стали (выше 27% Сг), хромоникелевая сталь 18-8, стеллит, золото, платина, эмаль Те же и дополнительно хромистые беспористые покрытия, винипласт, кислотоупорный бетон Тантал, сплав платины с танталом, иридий, родий, стеллит, серебро Хромоникелевая сталь (18—25% Сг, 8—9%Н1 , хромоникелевая сталь с добавкой Мо, железокремнистый сплав (14—16% 81), свинец (с 4% сурьмы), стеллит, серебро, золото, иридий Те же и дополнительно хромистая сталь, платина, стекло, фарфор, керамика, эбонит, фаолит Те же, что и для концентрированной кислоты при высокой температуре и, кроме того, кремнистая медь, тантал (до концентрации кислоты 33 /ц при 10и° С), резина (до 110°)  [c.84]

Существуют различные типы диаграмм состояния сплавов в зависимости от числа входящих в них компонентов (двойные — для двухкомпонентных, тройные — для трехкомпонентных сплавов). Ниже приведены важнейшие типы двухкомпонентных сплавов, которые образуют два типа соединений, — механическую смесь и твердый раствор. Диаграммы состояния сплавов химических соединений не рассматриваются. Сплавами, образующими механическую смесь, являются свинец — сурьма, медь — никель, алюминий — кремний и др. Диаграммы состояния сплавов строятся в координатах температура — содержание. Рассмотрим диаграмму состояния сплава с применением компонентов, которые в жидком виде неограниченно растворимы, а в твердом — образуют механическую смесь. К таким диаграммам 1-го рода относят диаграмму состояния сплава свинец — сурьма. Для построения диаграммы из множества спла-  [c.30]

На практике часто оказывается более удобным другой способ получения полупроводящих сегнетоэлектриков — легированием. Для получения высокой электронной электропроводности BaTiOg ионы Ва или частично замещают донорными ионами с большей валентностью. Двухвалентный барий замещают трехвалентными ионами редкоземельных металлов (РЗМ) — лантана La , церия Се +, самария Sm и др. — или индия 1п +. Ионы замещают на пятивалентные ионы висмута Bi , сурьмы Sb , ниобия Nb , тантала Та или шестивалентные ионы вольфрама W , рения Re . Такого рода примеси играют роль доноров и приводят к электропроводности п-типа. Наоборот, замещение иона Ti на трехвалентные ионы (Fe , Nb +, РЗМ) создает акцепторные уровни и вызывает переход к дырочной электропроводности.  [c.225]

Марка сплава Медь Никель и кобальт Марга- нец Крем- ний Свинец Угле- род Фосфор Сера Цинк Алю- миний Железо Мы- тьяк Олово Сурьма  [c.152]

Никель Ниобий Олово Осмий Палладий Платина Полоний Празеодим Протактиний Радий Рений Родий Ртуть Рубидий Рутений Самарий Свинец обыкновенный Свинец тори-евый Свинец урановый Селен Сера Серебро Скандий Стронций Сурьма Таллий Тантал Теллур Тербий Титан Торий Тулий Углерод Уран Фосфор Фтор Хлор Хром Цезий Церий Цинк Цирконий Эманация Эрбий  [c.27]

Соляная кислота ( Концентрирован ная (уд вес 1,19) То же Разбавленная Высокая Обычная Обычная Вольфрам, тантал, золото, иридий, родий, эбонит (до 66°), мягкая резина (до 110°), продо-рит (до 80°), горная порода—андезит, стекло, бакелет Те же и, кроме того, железокремнистый сплав (14—16% Si), свинец (медленно разрушается), керамика (трубопроводы, насосы), эбонитовая обкладка (например, железных труб) Те же, что и для концентрированной при высокой температуре й, кроме того, железокремнистый сплав (14—16% S ), твердый свинец (с добавкой сурьмы), алюминиевая брон , ыед-ноникелевые сплавы, кремнистая медь, никель, хромовое покрытие, молибденовое покрытие  [c.36]


Алюминий Сурьма Мышьяк, Свинец. Хром. . Железо. Золото. Кадм11й. Кобальт. Медь. . Латунь. Никель. Платина. Родий Серебро. Вольфрам Цинк, . Олово. .  [c.21]

Диаграмма этого рода соответствует кристаллизации сплавов олово — магний, марганец — кремний, кобальт — сурьма, магний — кальций и др. Для уяснения этой диаграммы приводим систему сплавов олово — магний, которые образуют между собой химическое соединение Mg2Sп и две структуры механической смеси (фиг. 25).  [c.69]


Смотреть страницы где упоминается термин Родий-сурьма : [c.151]    [c.375]    [c.13]    [c.40]    [c.42]    [c.34]    [c.338]    [c.502]    [c.203]    [c.10]    [c.46]    [c.290]    [c.402]    [c.99]    [c.11]    [c.60]    [c.34]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Родий-сурьма



ПОИСК



I рода

I рода II рода

Родан

Родиан

Родий

Родит

Сурьма



© 2025 Mash-xxl.info Реклама на сайте