Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Связь с методами строительной механики стержневых систем

Существует два общих метода строительной механики стержневых деформируемых систем метод сил и метод перемещений. Первый применяется для расчета статически неопределимых систем, а второй —для кинематически неопределимых систем ). В первом в качестве неизвестных принимаются (1 = 1,..., ) — внутренние усилия и (или) моменты в лишних связях, после определения которых система становится статически определимой, а во втором —2/ ( = 1,. .., т) — перемещения и повороты узлов.  [c.554]


В строительной механике стержневых систем многие задачи удобно решать смешанным методом [60]. Основная система этого метода образуется удалением некоторого количества связей в той части системы, где расчет удобно выполнять по методу сил, и наложением дополни-  [c.83]

Наиболее широко применяемым в машиностроении общим методом раскрытия статической неопределимости стержневых и рамных систем является метод сил. Он заключается в том, что заданная статически неопределимая система освобождается от дополнительных связей как внешних, так и взаимных, а их действие заменяется силами и моментами. Величина их в дальнейшем подбирается тз1-с, чтобы перемещения соответствовали тем ограничениям, которые накладываются на систему отброшенными связями. Таким образом, при указанном способе решения неизвестными оказываются силы. Отсюда и название метод сил . Такой прием не является единственно возможным. В. строительной механике широко применяются и другие методы,  [c.200]

Приведенное выше изло.жение в какой-то степени подобно классическому построению расчета статически неопределимых стержневых систем в строительной механике по так называемому методу сил, энергетическое обоснование которого также сводится к отысканию именно таких значений лишних неизвестных, при которых потенциальная энергия деформации системы оказывается минимальной. Сходство еще более усиливается, если представить себе расчет статически неопределимой системы (например, фермы), где за лишние неизвестные приняты внутренние усилия (например, усилия в стержнях), т. е. если основную (статически определимую) систему получать из заданной не путем отбрасывания элементов, связей и т. п., а путем перерезания их.  [c.61]

Наиболее широко применяемый в машиностроении общим методом раскрытия статической неопределимости стержневых и рамных систем является метод сил. Он заключается в том, что заданную статически неопределимую систему освобождают от дополнительных связей как внешних, так и взаимных, а их действие заменяют силами и моментами. Значения этих сил и моментов подбирают так, чтобы перемещения соответствовали тем ограничениям, которые накладывают на систему отброшенные связи. Таким образом, при указанном способе раскрытия статической неопределимости неизвестными оказываются силы. Отсюда и название метод сил . Такой прием не является единственно возможным. В строительной механике широко применяют и другие методы, например метод перемещений, в котором за неизвестные принимают не силовые факторы, а перемещения в элементах стержневой системы.  [c.266]


Для формирования разрешающей системы алгебраических уравнений смеша21ного метода в форме (4.42) требуется строить матрицы Г, Н, Ь и задавать матриды Еь Ед. В случае использования системы (4.45) нужно строить матрицы Г, Т/, и задавать матрицу Ег. Система уравнений (4.45) имеет более низкий порядок, чем система (4.42). В этом отношении она предпочтительнее. Перечисленные матрицы полностью определяются разбивкой стержневой системы на элементы и выбором узлов. В ре льтате расчет стержневой системы указанным смешанным методом зависит только от ее представления в виде совокупности узлов и элементов. Если же строить обычный смешанный метод, применяемый в строительной механике стержневых систем [21], то потребуется дальнейшее исключение неизвестных, например, в и teмe уравнений (4.45). Эта операция связана с разбивкой матриц в (4.45) на части, обращением соответствующих матриц и т. п. Она может быть вы-поднена по-разному и приводит к разным окончательным уравнениям. Здесь определенная разбивка стержневой системы на  [c.120]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]



Смотреть страницы где упоминается термин Связь с методами строительной механики стержневых систем : [c.61]    [c.223]   
Смотреть главы в:

Метод конечных элементов в проектировании транспортных сооружений  -> Связь с методами строительной механики стержневых систем



ПОИСК



412, 413 стержневые

Метод систем

Методы строительной механики

Механика строительная

Система со связями

Система стержневая

Стержневые системы систем



© 2025 Mash-xxl.info Реклама на сайте