Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные закономерности для потоков несжимаемой жидкости

ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ ДЛЯ ПОТОКОВ НЕСЖИМАЕМОЙ ЖИДКОСТИ  [c.169]

Исследованием было установлено, что холодный воздушный поток в циклонной камере с гладкими стенками с определенной степенью приближения следует основным закономерностям закрученного потока несжимаемой жидкости.  [c.151]

В подавляющем большинстве практически важных случаев течения жидкости и газа носят неупорядоченный, случайный характер, сопровождаются трехмерными пульсациями скорости и каскадом вихрей самых различных размеров. Такие движения называют турбулентными, и познание закономерностей таких движений является одной из основных (если не самой важной) задач современной гидрогазодинамики. По турбулентным течениям к настоящему времени накоплен большой экспериментальный материал, позволяющий для многих случаев с достаточной точностью решать задачи о сопротивлении тел в потоке и задачи тепломассообмена. Однако до сих пор не существует замкнутой системы уравнений турбулентного течения даже для потока несжимаемой жидкости.  [c.12]


Расчет газовых потоков при помощи таблиц газодинамических функций получил широкое распространение и является в настоящее время общепринятым. Помимо сокращения вычислительной работы, преимуществом расчета с использованием газодинамических функций является значительное упрощение преобразований при совместном решении основных уравнений, что позволяет получать в общем виде решения весьма сложных задач. При таком расчете более четко выявляются основные качественные закономерности течения и связи между параметрами газового потока. Как можно будет видеть ниже, использование газодинамических функций позволяет вести расчет одномерных газовых течений с учетом сжимаемости практически так же просто, как ведется расчет течений несжимаемой жидкости.  [c.233]

В настоящее время разработаны и успешно применяются численные методы-решения многих теплофизических задач расчет температурного состояния-твердых тел, температурных полей в потоках жидкости и газа, в жидких и газовых прослойках, заключенных в неподвижные или вращающиеся полости исследование закономерностей движения теплоносителя с целью выявления механизма процессов теплообмена исследование структуры пограничного слоя, теплообмена и трения на твердой поверхности и т. п. Одним из наиболее успешно развивающихся направлений использования математического эксперимента в теплофизических исследованиях является изучение закономерностей тепломассообмена и трения в потоках жидкости и газа с использованием теории пограничного слоя. Поэтому в качестве примера рассмотрим более подробно основные этапы математического эксперимента по исследованию сопротивления трения и теплоотдачи турбулентного потока к твердой поверхности. Ограничим задачу случаем стационарного течения несжимаемой жидкости с постоянными теплофизическими свойствами около гладкой плоской поверхности (в общем случае проницаемой).  [c.66]

Основные закономерности распространения дозвуковых турбулентных струй несжимаемой жидкости и газа к последнему времени хорошо изучены как теоретически, так и экспериментально. Это относится к слоям смешения, плоским, осесимметричным и пространственным затопленным струям и струям в спутном потоке. Общепризнанным является деление струи на три участка (рис. 1.1) начальный, переходный и основной [1.1,1.14].  [c.12]


Заключение. Раньше чем дать решение какой-нибудь частной проблемы движения жидкостей в пористой среде, следует разработать общую формулировку гидродинамики рассматриваемого течения. Любое такое исследование можно представить себе как формулировку в новой редакции хорошо известных основных определений и закономерностей механики, выраженных гидродинамическими значениями так, чтобы их можно было приложить к течению жидкостей. Это требует раньше всего, чтобы течение полностью подчинялось закону сохранения материи. Поэтому оно должно удовлетворять уравнению неразрывности [(1), гл. III, п. 1], которое является аналитическим утверждением закона сохранения материи. После этого необходимо определить термодинамическую природу интересующей нас жидкости и режим течения. Природа жидкости в общем виде может быть представлена зависимостью между давлением, плотностью и температурой его [уравнение (3), гл. Ill, п. 1], которое является уравнением состояния жидкости. Постоянство плотности в уравнении состояния характеризует собой несжимаемую жидкость. Так, закон Бойля может быть принят в. качестве уравнения состояния для течения идеального газа. Термодинамический режим течения может быть охарактеризован аналогичным путем зависимостью между давлением, плотностью и температурой. Так, температура потока постоянна при изотермическом режиме и изменяется от известного показателя степени плотности для адиабатического режима. Наконец, необходимо установить динамические связи жидкости с градиентом давления и внешними силами. В основном это дается гидродинамическим подтверждением первого закона движения Ньютона. Из всех характеристик течения, требуемых формулировками, эта характеристика является наиболее специфичней. В то время как все жидкости должны удовлетворять уравнению неразрывности, и большие группы их могут контролироваться единичным уравнением состояния, одна и та же жидкость может иметь различные динамические характеристики в зависимости от условий, при которых происходит движение, и среды, в которой поток движется.  [c.125]

В связи с ростом скоростей полета самолета широкое применение сейчас находят стреловидные крылья и крылья малого удлинения различной формы в плане. Условия обтекания профиля в сечении таких крыльев как при малых, так и при больших скоростях могут суш,ественно отличаться от условия плоскопараллельного потока из-за пространственного характера течения. В ряде работ ЦАГИ были установлены основные закономерности перестройки обтекания профиля в системе стреловидных крыльев и крыльев малого удлинения. В. В. Струминским, Н. К. Лебедь и К. К. Костюком (1948) путем экспериментального исследования распределения давлений в различных сечениях стреловидных крыльев при малых скоростях было показано, что наиболее суш,ественным изменениям, обусловленным трехмерным характером течения, подвергается обтекание профилей, установленных в корневых и концевых сечениях стреловидного крыла, В корневом сечении крыла с прямой стреловидностью область повышенных местных скоростей смеш ается вперед к носку профиля по сравнению с эпюрой скоростей такого же профиля в условиях плоскопараллельного обтекания в концевом сечении происходит обратная перестройка, т. е. область повышенных местных скоростей смеш,ается к задней кромке профиля. В срединных сечениях стреловидного полукрыла большого удлинения условия обтекания близки к условиям на скользящем крыле бесконечного удлинения. В работе Я. М. Серебрийского и М. В. Рыжковой (1951) с помощью метода источников и стоков проводится приводящее к тем же выводам, что и эксперимент, теоретическое исследование симметричного обтекания профиля в системе тонкого крыла произвольной формы в плане при обтекании его потоком идеальной несжимаемой жидкости. Учет пространственного обтекания стреловидного крыла приводит к необходимости применения профилей различной формы на отдельных участках крыла. Такие специальные профили создавались для корневых и концевых отсеков стреловидного крыла (Г. П. Свищев, Я. М. Серебрийский, К. С. Николаева, М. В. Рыжкова). Существенное изменение местных скоростей происходит и на крыльях малого удлинения. При уменьшении удлинения за счет пространственности обтекания уменьшаются возмущения на поверхности профиля, причем для малых удлинений это уменьшение возмущений может быть весьма существенным не только в концевых, но и в средних сечениях крыла.  [c.89]



Смотреть страницы где упоминается термин Основные закономерности для потоков несжимаемой жидкости : [c.794]    [c.699]   
Смотреть главы в:

Справочник металлиста Том 1 Изд.2  -> Основные закономерности для потоков несжимаемой жидкости



ПОИСК



Жидкости маловязкие Истечение несжимаемые — Потоки Закономерности основные

Жидкость несжимаемая

Основные закономерности

Поток жидкости

Поток несжимаемой жидкости

Поток несжимаемый



© 2025 Mash-xxl.info Реклама на сайте