Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые свойства сероводорода

Некоторые свойства сероводорода  [c.49]

Присутствие угольной кислоты в растворах значительно повышает скорость коррозии медноцинковых сплавов. Продукты коррозии, обычно образующиеся на медных сплавах, растворимы в воде, содержащей угольную кислоту, и поэтому не обладают защитными свойствами. Сероводород в пресной и морской воде ускоряет коррозию некоторых сплавов на медной основе, образуя обильные продукты коррозии, хотя и очень слабо растворимые, но не обладающие, однако, защитными свойствами. Латуни с высоким содержанием цинка более стойки против действия сероводорода, чем чистая медь или томпак.  [c.186]


Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя Hj, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Hj и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра-  [c.58]

Химические свойства. Все газовые топлива состоят главным образом нз водорода, окиси углерода и углеводородов. Некоторые искусственные газы содержат сероводород, придающий им характерный неприятный 11—1046 161  [c.161]

Как видно из данных табл. 9,9, в присутствии сероводорода проявляется синергетический эффект. Таким образом мы встречаемся со своеобразной ситуацией, когда H2S, усиливающий обычно коррозию и водородное охрупчивание стали, облегчает защиту ингибиторами. Аналогичная картина наблюдалась авторами работы [59]. Карбамид, тиокарбамид и их производные не проявляли особых защитных свойств по отношению к стали в 0,1 н. НС1, но в присутствии H2S эти соединения показывали исключительно высокий ингибирующий эффект. Защитный эффект у некоторых производных карбамида и тиокарбамида в H I+H2S приведен ниже  [c.298]


Одновременное воздействие на металл влажного сероводорода и нагрузки вызывает усталостную коррозию. Эта коррозия приводит к растрескиванию обычных и некоторых специальных сталей, подвергающихся натяжению, напряжению или сжатию. Причиной этого явления служит изменение физико-механических свойств металла под действием сероводорода.  [c.121]

Сера 8 — в природе встречается в свободном состоянии, а также в виде различных соединений. Особенно распространены сернистые соединения с металлами (сульфиды), а также производные серной кислоты (сульфаты). Сера существует в виде нескольких модификаций ромбической, моноклинной, аморфной и пластической. По химическим свойствам сера представляет собой типичный металлоид. Она энергично взаимодействует с галогенами, водородом, кислородом и почти со всеми металлами (для некоторых реакций необходимо нагревание). Сера хорошо растворяется в сероуглероде, дихлорэтане и хлористой сере. Свободная сера добывается выплавкой самородной серы, а также из газов, образующихся при обжиге сернистых руд. Основные соединения серы — сероводород, сернистый газ (двуокись серы) 50г и серный ангидрид (трехокись серы) 80з. Два последних соединения при взаимодействии с водой дают соответственно сернистую и серную кислоты. Используется для вулканизации каучука.  [c.10]

Основное достоинство реагента — низкие вязкость и температура застывания (менее 223 К), что позволяет хранить его на открытых площадках и применять в холодное время года без предварительного подогрева. При лабораторном тестировании в жидких искусственных модельных средах (насыщенные сероводородом углеводороды, например бензин марки А-72, и 3%-й водный раствор ЫаС ) ингибитор показывает удовлетворительные защитные свойства. Его технологические свойства также соответствуют требованиям, предъявляемым к ингибиторам на промыслах нефти и газа. К недостаткам реагента относятся сильный неприятный запах, присущий пиридиновым основаниям, высокая токсичность, низкая устойчивость образующейся защитной пленки. Ингибитор Д-1 в течение некоторого времени применяли на ОНГКМ, где была отмечена его удовлетворительная защитная эффективность. Одной из проблем, вызванных применением реагента в газосборной системе ОНГКМ, явилась закупорка отложениями и продуктами коррозии импульсных трубок контрольно-измерительных приборов и автоматики и другого оборудования, что было обусловлено высокими детергентными (моющими) свойствами пиридиновых оснований. В связи с этим использование ингибитора Д-1 на ОНГКМ было прекращено.  [c.345]

Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованных сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2. ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь м, с были чены следующие результаты  [c.25]

Эффект синергизма достигается при совместном введении в электролит производных пиридина или анилина, с галогенид- ионами. По повышению защитного действия галогенид-ионы можно расположить в ряд J", Вг", СГ, т.е. в последовательности, обратной изменению их энергии гидратации, Дж/моль 353 для СГ 319 для Вг и 268 для J , так как более гидратированные поверхностные комплексы с галоидом, например, с ионом хлора, легко теряют связь с атомами кристаллической решетки металла и переходят в раствор. Анионы с меньшей энергией гидратации, хемосорбируясь на поверхности металла, теряют гидратированную воду и приобретают свойства защитной пленки. Резко возрастает защитный эффект от введения -аминов и некоторых других ингибиторов катионного типа при наличии в кислой среде сероводорода, тогда как в аналогичной среде без сероводорода эти же соединения являются слабыми ингибиторами коррозии. В таких случаях адсорбированные на поверхности железа анионы СГ, Вг", J", HS выполняют роль анионных мостиков, облегчающих адсорбцию ингибиторов катионного типа.  [c.144]


Восстановленные атомы водорода частично рекомбинируют, а частично диффундируют в металл, вызывая водородную хрупкость. Сульфиды железа, образующиеся в результате коррозии железа в сероводородсодержащих средах, имеют различное строение в зависимости от условий их образования и оказывают различное влияние на скорость коррозии. Так, при низких концентрациях сероводорода (до 2 мг/л) сульфидная пленка состоит главным образом из трои-лита FeS и пирита FeSj с размерами кристаллов до 20 нм, образующих довольно плотную пленку и оказывающих некоторое защитное действие от коррозии. При концентрациях сероводорода от 2 до 20 мг/л дополнительно появляется небольшое количество кансита FegSj. При концентрации сероводорода выше 20 мг/л в продуктах коррозии преобладает кансит, размеры кристаллов увеличиваются до 75 нм, кристаллическая решетка несовершенна, не препятствует диффузии сероводорода и поэтому не обладает защитными свойствами.  [c.21]

Эффективность смазок для титана. Обладая высокой поверхностной активностью, титан очень интенсивно образует окисные пленки (хемсорбция кислорода) и адсорбирует газы из окружающей среды (активированная физическая адсорбция газов). Защищенная газами активная поверхность титана теряет способность адсорбировать обычно применяемые в промышленности виды смазок. В работах Е. Рабиновича и А. Кингсбери [136] показано, что минеральные масла (испьггывалось 15 марок масел с различными антифрикционными добавками и без них) с вязкостью от 50 до 1000 сСт не эффективны (/ = 0,45 н- 0,47) производные углеводородов с длинной цепью также не эффективны (/ близок к 0,47) реагирующие с поверхностью титана неорганические жидкости (крепкий раствор каустической соды в воде, раствор йода в спирте, раствор сероводорода в воде и др.) значительно снижают коэффициент трения, но свойства этих жидкостей (низкая вязкость, испарение составляющих и др.) не позволяют использовать их для практического применения в качестве смазки синтетические соединения с длинной цепью (силиконовые масла, полиэтиленовые и полипропиленовые гликоли, растворы сахара, патока, мед и др.) уменьшают коэффициент трения причем самыми эффективными являются полиэтиленовые гликоли (/ =0,26) некоторый положительный результат в снижении коэффициента трения отмечается для углеводородов, содержащих галогены.  [c.188]

Продукты коррозии железа, образующиеся в сероводородсодержащих средах, имеют общую формулу Fe Sy и оказывают существенное влияние на кинетику коррозионного процесса. Структура и защитные свойства сульфидов железа зависят от условий образования, главным образом от парциального содержания сероводорода в среде. В литературе имеются сведения о рентгеноструктурных и электронно-графических исследованиях [48], в результате которых установлено, что при низкой концентрации сероводорода (до 2,0 мг/л) сульфидная пленка состоит главным образом из троилита FeS и пирита FeS2 с размерами кристаллов до 20 нм. При концентрации сероводорода от 2,0 до 20 мг/л дополнительно появляется небольшое количество кан-сита FegSg. При концентрации сероводорода выше 20 мг/л в продуктах коррозии преобладает кансит и размеры кристаллов увеличиваются до 75 нм. Кансит имеет несовершенную кристаллическую решетку, поэтому он не препятствует диффузии железа и не обладает защитными свойствами. Поэтому устанавливается постоянная и довольно высокая скорость коррозии. Кристаллические решетки пирита и троилита имеют относительно небольшое число дефектов, тормозят диффузию катионов железа и оказывают некоторое защитное действие.  [c.10]

Сероводород образует с металлами сульфиды, пленка которых чаще всего не только не обладает защитным действием, но в некоторых случаях может стимулировать коррозию, например FeS. Между тем, сульфид хрома СггЗз [8] обладает необходимыми защитными свойствами  [c.26]

При обогащении раствора моноэтаноламина сероводородом значительно изменяются некоторые его физико-химические свойства, раствор становится коррозионнозктивным.  [c.215]

Коагулянты, содержащие трехвалентное железо. Хлористое железо (Fe ls), сернокислая окись железа [Ре (804)3] и их смесь, известная под названием хлорированного купороса, являются коагулянтами, эффективность которых с наибольшей силой проявляется при обработке сточных вод . К числу положительных свойств коагулянтов, содержащих трехвалентное железо, можно отнести следующие свойства коагуляция эффективна при более широких пределах величины pH, чем в случае прнмепения сернокислого алюминия время, необходимое для образования хлопьев и оседания их, во многих случаях значительно меньше, чем при сернокислом алюминии увеличивается продолжительность фильт-ро-цикла, как показали некоторые испытания успешно удаляется марганец при pH выше 9,0 в воде остается небольшое количество железа удаляется сероводород и уменьшаются привкус и запах уменьшается образование комков грязи по сравнению с хлопьями алюминия при некоторых условиях железные коагулянты более экономичны, чем гидроокись алюминия .  [c.219]

Свойства и применение С. Помимо различной активности в отношении высыхания масел С. оказывают различное действие не только на характер сушки масел, но также и на качество получаемой пленки. Кобальтовые С. обладают свойством производить высыхание с внешней поверхности пленки внутрь, в то время как свинцовые и марганцевые С. обусловливают высыхание изнутри вверх. Поэтому при значительном содержании в масле кобальта возможно затвердевание только наружного поверхностного слоя, тогда как нижняя часть может остаться невысохшей, что приводит затем к размягчению и липкости покрытия, не говоря уже о его непрочности. Свинцовые сикативы, и в особенности свинцовомарганцевые, дают при высыхании очень твердые и хорошо просыхающие пленки. В отношении цвета кобальтовые С. дают наиболее светлые продукты (олифа,лак и т.д.), которые при действии света становятся еще светлее, поэтому их применяют гл. обр. в производстве клеенки, лин-крусты и др., т. к. пленка, получаемая с ними, кроме того отличается мягкостью и гибкостью. Под действием атмосферы, в особенности содержащей сероводород, белые красочные пленки со свинцовыми С. желтеют и темнеют, в то время как пленки, получаемые с кобальтовыми С., почти не изменяются. С., содержащие свинец, считаются вредными, поэтому их заменяют марганцевыми и кобальтовыми С. или применяют комбинации их с другими металлами. Свинцовые С.обладают также склонностью к выпадению из раствора в масле, в особенности под влиянием воздуха и света, что объясняется образованием нерастворимых жирных оксикислот. Отличаются ли по своим свойствам как С. линолеаты и резинаты, полученные с одним и тем же металлом, не выяснено. Нек-рые исследователи считают, что высыхание масел зависит не только от химич. состава, но и от коллоидного состояния С., на к-рое органич. компонент может оказьшать различное диспергирующее влияние. Другие находят, что правильно приготовленные резинаты и линолеаты действуют совершенно одинаково. Различные условия сушки (влажность, Г и т. д.) оказьшают влияние не только на скорость высыхания, но и на качество пленки, напр, свинцовые и марганцевые резинаты во влажном воздухе дают после высыхания отлип , чего не наблюдается у линолеатов (см. Олифа). Резинаты по сравнению линолеатами более дешевы, легче растворяются и менее изменяются при хранении. Осажденные резинаты в отличие от плавленых растворяются в масле уже на холоду или при слабом нагревании. Недостатком их является присутствие свободной канифоли. Обычно резинаты применяются для изготовления олиф и некоторых лаков. Линолеаты дают более гибкую, эластичную и прочную пленку, поэтому идут на изготовление лаков для кожи, изоляционных к других, а также для лаков, подвергающихся шлифовке (автомобильных, каретных и т. д.). Они выдерживают также значительно лучше высокие t°. Недостатком линолеатов, в особенности плавленых, является склонность их к выделению из растворов вследствие окислительного действия воздуха, полимеризации и других причин. При употреблении С. (как твердых, так и жидких) необходимо обращать особенное внимание на содержание в них активного металла, которое в продажных продуктах может колебаться в очень широких пределах.  [c.391]



Смотреть страницы где упоминается термин Некоторые свойства сероводорода : [c.504]    [c.451]    [c.504]   
Смотреть главы в:

Коррозия и защита от коррозии. Том 4  -> Некоторые свойства сероводорода



ПОИСК



Сероводород

Сероводород Свойства



© 2025 Mash-xxl.info Реклама на сайте