Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анализ разрушения композитов

АНАЛИЗ РАЗРУШЕНИЯ КОМПОЗИТОВ  [c.104]

Анализ разрушений композитов 139  [c.139]

Критерий разрушения в форме (6.11) представляет традиционную меру оценки других критериев разрушения, которые еще появятся в связи с необходимостью анализа разрушения композитов.  [c.231]

Простейшей разновидностью концентрационных критериев макроразрушения является критерий, используемый в поэлементном (послойном) анализе разрушения композита, записываемый обычно следующим образом  [c.77]


При переходе к модели сплошной среды происходит кажущаяся потеря информации о перераспределении силового и физического полей между компонентами материала, особенно важной при анализе разрушения композитов. Однако этот прием не означает игнорирования действительной структуры материала. Если необходимо найти структурные напряжения и деформации, нужно снова вернуться на уровень К. Свойства композита могут быть выражены через свойства составляющих, а по напряжениям и деформациям, рассчитанным для квазиоднородного материала, могут быть определены эти величины в компонентах материала. Они, в свою очередь, могут быть сопоставлены с различными критериями.  [c.25]

Как и в слоистых композитах, доказательство существования и вычисление дают алгоритм для характеристики разрушения композитов с более сложной геометрией структуры, основанный на соответствующем анализе напряжений.  [c.243]

В предыдущих разделах мы обсуждали предсказание прочности композита (при отсутствии макротрещин) на основе феноменологического критерия разрушения. Также была рассмотрена характеристика разрушения композита на основе общего баланса энергии для одномерных задач о трещине. Далее было установлено, что распространение трещины можно характеризовать разрушением внутри критического объема и что в общем случае многомерной задачи о трещине решение можно получить путем объединения критерия разрушения с анализом напряжений в кончике трещины. Хотя проведенный анализ позволяет нам предсказать и сопоставить условия разрушения характерного объема и общего разрушения, он не способствует дальнейшему пониманию микромеханики разрушения. Расширение области исследований обеспечило бы разумную основу для определения области использования материала и улучшения его свойств. Следовательно, необходимо более детальное исследование роста трепщны в окрестности кончика трещины.  [c.243]

Все главы книги посвящены анализу неупругих свойств в задачах деформирования и разрущения композитов. Последовательно рассмотрены общие вопросы построения композитов, природа их прочности и пластичности, механизм разрушения и усталости материалов с разной укладкой арматуры дан анализ разрушения слоистых композитов в условиях одноосного и двухосного нагружений с обзором критериев предельных состояний для анизотропных материалов осуществлен учет вязкоупругости в задачах деформирования и разрущения очерчены области применения линейной механики разрушения для композитов наконец, рассмотрены напряжения, возникающие вблизи волокон в процессе отверждения полимерной матрицы.  [c.5]


После почти десятилетнего периода поисков и исследований современные композитные материалы получили широкое распространение во многих отраслях современной техники — от космической до производства изделий массового потребления. Высокие удельные характеристики жесткости и прочности и особенности технологии переработки, позволяющие создавать материалы с заданной ориентацией свойств, выдвинули композиты на первый план среди современных конструкционных материалов. Естественно, в связи с развитием и внедрением новых конструкционных материалов возникла необходимость научиться оценивать их прочностные свойства при различных видах нагружения. Не менее важно знать, как технологические (поверхностные дефекты, нарушения адгезионной связи между слоями) и конструкционные (болтовые, заклепочные, клеевые соединения, закладные детали из других материалов) несовершенства изменяют механизм разрушения композитов. В то же время многочисленные попытки анализа и интерпретации имеющихся экспериментальных данных пока еще не привели к исчерпывающему пониманию явления разрушения в композитах.  [c.34]

Проблема оценки чувствительности конструкций из композита к повреждениям настолько сложна, что неясными являются даже подходы к ее решению. В сложившейся ситуации целесообразно попытаться применить методы расчета и анализа, разработанные для металлов. Если использованный метод окажется работоспособным, то открывается возможность добиться успеха сравнительно малыми усилиями. Для задач усталости и разрушения композитов разумно попытаться использовать методы механики разрушения, развитые применительно к металлам. Безусловно, следует быть готовым к тому, что перенос этих методов на новый класс материалов не всегда окажется  [c.51]

На рис. 2.29 показаны типичные зависимости, полученные при помощи предложенного анализа. Верхний график иллюстрирует характерное изменение протяженности а зоны межслойного разрушения при изменении средних напряжений сг, приложенных к композиту. Межслойное разрушение начинается только после того, как напряжения между слоями достигнут уровня Су, соответствующего появлению неупругой области на границе трещины в слое. При дальнейшем росте напряжений вплоть до уровня Ос (рис. 2.29) размер неупругой области увеличивается. При Ос нарушится связь между слоями с трещиной и смежными слоями (начинается процесс расслоения). При этом в большинстве случаев еще возможно дальнейшее увеличение средних напряжений в композите. Как правило, рост напряжений выше уровня сгс составляет 10 ч- 100% в зависимости от свойств материала. Окончательно, при напряжении Od рост области расслоения становится неустойчивым, и последующее малое приращение приложенных напрял<ений приводит к полному разрушению композита. Напряжение Od считается напряжением, приводящим к разрушению слоистого композита от нарушения межслойных адгезионных связей, при условии, что в композите существуют слои с начальными трещинами. Подобное представление процесса межслойного разрушения аналогично рассмотренному ранее процессу распространения трещины в направлении нагружения (рис. 2.27).  [c.82]

На основании экспериментальных данных строятся непрерывные функции изменения характеристик материала в соответствии с уравнениями (2.6), (2.7). Полученные функции представляются в дискретном виде для шага с заданным числом циклов. На этом этапе следует хорошо понимать специфические свойства полимерной матрицы и волокон. Высокопрочные волокна имеют, как правило, отличные усталостные характеристики, и изменения их модуля и прочности в процессе нагрул<ения незначительны. Свойства матрицы ухудшаются, однако, весьма значительно. Надо ожидать, что учет усталостных свойств волокон и матрицы приведет к появлению в анализе дополнительных параметров. В их числе параметр, описывающий поведение поверхности раздела волокно — матрица. Отсюда следует, что определение усталостных характеристик компонент композита и выяснение их взаимосвязи не менее важно, чем получение данных об усталостном разрушении композита в целом.  [c.89]

Ранее упоминалось, что предложенный анализ не позволяет учитывать очень существенное влияние последовательности укладки слоев композита по толщине и межслойное разрушение. Однако известно (см., например, [16]), что предельная нагрузка и вид разрушения композитов при статическом и усталостном нагружениях сильно зависят от  [c.95]


В теории Гриффитса — Ирвина предполагается, что трещина распространяется линейно. Существуют примеры невыполнения этого требования у реальных материалов, как изотропных [28], так и анизотропных [20]. Си [7] показал, что применение линейной упругой механики разрушения к однофазным материалам, в которых трещина распространяется нелинейно (это часто бывает при смешанных видах нагружения), может привести к большим ошибкам. Среди перечисленных далее теорий в некоторых из них рассматриваются только определенное направление роста трещины и напряженное состояние. Различные подходы механики разрушения можно классифицировать в соответствии с возможностью их прямого применения для решения задач анализа слоистых композитов с трещинами.  [c.235]

При анализе прочности композитов в условиях внеосного нагружения влияние поверхности раздела может быть учтено несколькими способами. Например, можно предположить, что прочность поверхности раздела достаточно велика для передачи вне-осных нагрузок между волокнами и матрицей вплоть до момента разрушения композита. Такое предположение означае т, что по-ве рхность раздела прочна и не разрушается. Таким образом, в соответствии с терминологией, использованной в гл. 4, посвященной прочности при продольном растяжении, теории этого типа могут быть названы теориями прочных поверхностей раздела .  [c.186]

Таким образом, теория прочности композитов при внеосном растягивающем нагружении развита для случаев, когда либо разрушение происходит не по поверхности раздела, либо разрушение по поверхности раздела учитывается лишь косвенно. При решении более сложной задачи — прямого анализа влияния поверхности раздела на прочность при внеосном нагружении — достигнуто меньше успехов, хотя определенные возможности представляет метод конечных элементов [1]. С помощью теорий, рассматривающих непосредственно поверхность раздела, были предсказаны разумные величины верхнего и нижнего предельных значений поперечной прочности, однако они пока не подтверждены экспериментально. Задача разработки более соверщенного подхода, который позволил бы количественно оценить влияние поверхности раздела на прочность при внеосном нагружении, пока не решена. Ряд проблем возникает из-за трудностей экспериментального определения важных характеристик поверхности раздела, другая группа проблем — из-за того, что неясно, как на основе экспериментальных значений данных характеристик предсказать прочность композита. Это — сложные проблемы драктического и теоретического характера, однако начало их решению может быть положено определением характеристик композита при внеосном растяжении и исследованием разрушенных образцов, что позволяет установить роль поверхности раздела в разрушении композита при растяжении. Результаты ряда таких исследований рассмотрены ниже.  [c.203]

Из анализа энергии разрушения, модуля упругости и прочности этой системы ясно, что, несмотря на более высокую энергию разрушения композитов с плохими связями по поверхностям раздела, прочностные свойства вследствие этой слабой связи определяют более низкий модуль упругости перед разрушением. Следует также отметить, что псевдопоры представляют собой более опасные инициаторы трещин, чем связанные с матрицей частицы, что также приводит к более низким прочностям.  [c.51]

Противоположная точка зрения, утверждаюш,ая, что разрушение композита при сжатии можно описать правилом смесей, основывается, по-видимому, на данных, зависящих от воздействия микромеханических факторов. Такого рода соотношение могло бы быть справедливо, когда разрушение возникает в композите при заранее определенном уровне деформаций, связанном с характерным уровнем напряжений в волокнах или в матрице. Например, в работе [53] обнаружено очень хорошее согласие с правилом смесей для разрушения отлитой в вакууме меди, армированной вольфрамовой проволокой. Анализ разрушенных образцов позволил установить в этом случае, что композиты неизменно разрушались от продольного расщепления вольфрама, т. е. в результате процесса, который, по-видимому, должен происходить при определенной деформации волокон.  [c.456]

Исследованы механизмы разрушения материалов, армированных волокнами при статическом и циклическом нагружениях. Показана важность и Необходимость рассмотрения разрушения композитов на микроуровне. Причина этого заключается в первую очередь в присущей этим материалам неоднородности и анизотропии, приводящим к существованию многочисленных плоскостей слабого сопротивления (например, сдвигу и поперечному отрыву), по которым, как правило, распространяются трещины. В начале главы коротко рассмотрены виды разрушения однонаправленных слоистых композитов без надрезов при растяжении — сжатии в направлении армирования и перпендикулярном направлении, а также при сдвиге. Акцент сделан на особенностях разрушения этих композитов на уровне компонент. Макроповедение композитов оценивалось на основании анализа неустойчивого развития повреждений, возникших на микроуровне. При помощи модели, названной моделью сдвигового анализа, учитывающей неоднородность композита на микроуровне, теоретически обосновано аномальное влияние диаметра отверстия в слоистом композите на несущую способность. Этот метод анализа также использован для моделирования поведения слоистого композита со сквозным отверстием.  [c.33]

В качестве одного из путей преодоления этого несоответствия теории и реального процесса Си и Чен [31] предложили использовать для анализа разрушения волокнистых композитов так называемую теорию плотности энергии [30]. В основу теории положено предположение о том, что решение механики сплошной среды работает вплоть до области, лежащей вблизи кончика трещины на расстоянии порядка радиуса кривизны вершины трещины. Коэффициент плотности энергии деформирования элемента, лежащего вне этой области, является функцией его положения относительно осей надреза. Развитие трещины происходит, когда величина этого коэффициента достигает критического значения. Предполагая, что трещина распространяется только параллельно волокнам, при помощи теории плотности энергии в работе [31] получены значения критических напряжений для различных углов распространения трещины и зависимости угла разрушения от угла трещины для однонаправленного стеклопластика на эпоксидном связующем. Хотя в [31] и сказано, что рассматриваемая теория пригодна для случая трещины с притупленной вершиной, остается неясным, каким образом осуществить анализ напряжений, если вне области, примыкающей к вершине трещины, существует зона нелинейности.  [c.54]


Очевидно, что применение методов мнкро- и макромеханики для анализа процесса разрушения слоистых композитов позволило достичь определенных успехов в объяснении некоторых экспериментальных данных. Тем не менее окончательно проблема качественной и количественной интерпретации всего спектра видов разрушения слоистых композитов остается нерешенной. Поэтому исследования должны быть направлены на оценку влияния неоднородности материала и разработку более простых моделей для предсказания разрушения композитов.  [c.54]

С неоднородностью композита приходится сталкиваться на двух уровнях. Во-первых, каждый слой слоистого композита можно представить как однородный анизотропный, а композит в целом — как материал, составленный из таких слоев. В этом случае неоднородность на макроуровне ведет к учету эффектов свободных кромок, расслоения и эффектов, связанных с последовательностью укладки слоев по толщине. Во-вторых, неоднородность может быть включена в анализ на микроуровне, при этом волокна и матрица слоя рассматриваются как раздельные фазы. Нетрудно заметить, что при этом анализ напряжений для слоистого композита с произвольной схемой армирования становится практически неосуществимым. Следовательно, подход к изучению разрушения композитов с позиций микромеханики применим только для простейших однонаправленных армированных материалов.  [c.55]

Инженерный анализ новедения композитов в общем случае представляет собой исследование, основанное на построении упрощенных моделей, учитывающих лишь основные аспекты поведения материала. Таким образом, делается попытка избежать чрезмерно подробного анализа, например не рассматривается точное распределение напряжений в объеме. В то же время учитывается структурная неоднородность композита, поскольку замена этого материала однородным анизотропным с точки зрения проблем разрушения не является адекватной. Поэтому создается расчетная модель материала, не требующая проведения сложного расчета напряженного состояния, но учитывающая в то же время наиболее существенные с точки зрения исследуемого поведения структурные особенности материала.  [c.55]

Рассмотрено последовательное развитие методов и моделей для анализа разрушения армированных волокнами материалов методами микромеханики. В основе предложенного инженерного решения проблемы лежит учет неоднородности композита, поскольку замена композита однородным анизотропным материалом не соответствует сущности происходящих явлений усталости и разрушения. В то же время не рассматривались такие тонкости явления, как механика ми-кроразрушения. В результате оказалось возможным сформулировать упрощенную модель, объединяющую реальные свойства материала с разумными инженерными допущениями. -  [c.100]

Детальное описание современных методов анализа разрушения слоистых композитов не является целью главы. Скорее в ней сделана попытка показать некоторые задачи, к решению которых неприменимы стандартные подходы, и обсудить области применения предложенных макроподходов и возникающие ограничения. В частности, в разд. 3.2 рассмотрены способы учета нелинейности поведения и начальных напряжений при оценке несущей способности слоистых композитов без концентраторов напряжений влиянию концентраторов посвящен разд. 3.3.  [c.105]

Проявление нелинейного, зависящего от времени, поведения многими из композитов, армированных волокнами или частицами, в значительной степени объясняется явлением микрорастрескивания. Предложенные в настоящее время уравнения состояния позволяют учесть разрушение на микроуровне. Однако если говорить о практически применимых надежных инженерных методах оценки и анализа поведения композитов при многоосном напряженном состоянии, то предмет нелинейная вязкоупругость композитов еще находится в самой начальной стадии разработки.  [c.217]

Далее раздельно рассмотрены методы анализа композитов на уровне составляющих их компонент (микромеханиче-ские) и методы, представляющие композит как квазиодно-родный материал (макромеханические). Наибольшее внимание уделено последним методам, так как они непосредственно применимы для решения задач разрушения композитов и подтверждены экспериментально.  [c.235]


Смотреть страницы где упоминается термин Анализ разрушения композитов : [c.162]    [c.35]    [c.105]    [c.107]    [c.111]    [c.123]    [c.129]    [c.131]    [c.133]    [c.137]    [c.261]    [c.315]    [c.286]    [c.283]    [c.276]   
Смотреть главы в:

Неупругие свойства композиционных материалов  -> Анализ разрушения композитов



ПОИСК



Анализ разрушения

Композит

Разрушение композитов

Шейпери. 5. Анализ деформирования и разрушения вязкоупругих композитов



© 2025 Mash-xxl.info Реклама на сайте