Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Переход от скольжения к двойникованию

Следует отметить, что в современной физике прочности интенсивно развиваются дислокационные представления о процессе механического двойникования, что позволяет успешно анализировать условия перехода, от скольжения к двойникованию и наоборот [20—22], а также прогнозировать такой переход в некоторых практически важных случаях 9, 22].  [c.10]

Переход от скольжения к двойникованию  [c.57]

Интерес к исследованию механического двойникования был обусловлен началом в 60-е годы широкого изучения исключительно важного в практическом отношении явления хрупкого разрушения материалов и конструкций в условиях низкотемпературной деформации. Двойникование в этом вопросе рассматривалось с двух альтернативных позиций во-первых, как одна из вероятных причин вязко-хрупкого перехода, а, во-вторых, как потенциальный способ повышения низкотемпературной пластичности материала. Поэтому одной из основных задач физики прочности того периода стало изучение общих закономерностей пластической деформации и разрушения при механическом двойниковании. Одно из первых решений указанной задачи было предложено в работе [121] в виде схемы перехода от скольжения к двойникованию в поликристаллах. Построение схемы основывалось на данных работы [117] и собственных результатах авторов [121], полученных при низкотемпературном растяжении армко-железа со скоростями 10 — 10 с .  [c.57]


Рис. 2.19. Схема перехода от скольжения к двойникованию в поликристалле с размером зерна О. Рис. 2.19. Схема перехода от скольжения к двойникованию в поликристалле с размером зерна О.
Экспериментальные кривые [22] температурной зависимости (рис.2.20) предела пропорциональности (который в первом приближении принимается за напряжение начала пластической деформации) при наличии перехода от скольжения к двойникованию несколько отличается от схемы, приведенной на рис. 2.19, так как ряд участков кривых о и ол практически не реализуется. Действительно, при температуре Т > Гд (см. рис. 2.20) в процессе роста внешней нагрузки первым достигается уровень напряжений о и начинается пластическая деформация скольжением, в течение которой резко увеличивается плотность подвижных полных дислокаций, что, как неоднократно отмечалось. [21, 118, 121] приводит к подавлению двойникования, т. е. участок кривой сгД выше температуры Гд фактически не существует. С другой. стороны, при температуре Г < Тд из-за наличия концентраторов.  [c.63]

Переход от скольжения к двойникованию в сплаве Сг — 45 % Ре полностью отвечал схеме, предложенной в работе [221, а двойникова-пие благодаря низкому значению у наблюдалось даже при 100 °С, несмотря на малую скорость деформации.  [c.65]

На рис. 160 приведена температурная зависимость предела текучести чистого и легированного германия. На этой кривой четко виден перелом, соответствующий переходу от деформации двойникованием к деформации скольжением.  [c.254]

Высокими считаются температуры, превышающие минимальные температуры рекристаллизации, т. е. -- 50% температуры плавления металлов. В ряде случаев именно в этой области работают металлы огневых стенок агрегатов ЖРД. При таких температурах прочность и пластичность металлов начинают зависеть от скорости деформации. Это объясняется тем, что к основным видам деформации кристаллов — скольжению и двойникованию в высокотемпературной области — добавляется проскальзывание по границам зерен. Границы зерен являются слоями толщиной в, несколько атомов с особой структурой дислокаций, обеспечивающей непрерывный переход между кристаллическими решетками соседних зерен. Прочность границ сильнее, чем прочность собственно зерен, зависит от температуры материала и скорости деформации. Как показано на рис. 4.19, зерна по сравнению с их границами относительно менее прочны в области низких температур. Поэтому в этой области (левее точки ai пересечения графиков 1 ж 2, соответствующей равной прочности зерен и их границ) пластичные металлы деформируются и разрушаются всегда непосредственно по зернам кристаллов.  [c.91]


Какой тип мартенсита формируется, зависит от соотношения в аустените критических касательных напряжений, вызывающих скольжение и двойникование. Если для начала скольжения требуется большее касательное напряжение, чем для начала двойникования, то образуется пластинчатый мартенсит, а в противоположном случае — реечный. Основываясь на этом положении, легко объяснить многие закономерности перехода от одного типа мартенсита к другому и прежде всего влияние состава сплава на морфологию мартенсита (табл. 9).  [c.235]

При большем содержании, например, углерода в относительно низкотемпературном мартенситном интервале сопротивление скольжению выше, чем двойникованию, и образуется пластинчатый мартенсит. Переход от одного морфологического типа мартенсита к другому происходит в интервале составов. Понятно также, почему в реечном мартенсите часть кристаллов (реек) содержит двойниковые прослойки — это те кристаллы, которые образовались в нижней части мартенситного интервала, а так как они появились в последнюю очередь, то морфологический тип остался реечным.  [c.235]

Накоплен большой экспериментальный. материал по исследованию закономерностей структурообразования при больших пластических деформациях [5, 8—13]. Вместе с тем теоретическое обобщение мпого-численных экспериментальных данных, полученных в последнее десятилетие, наталкивается на ряд серьезных и естественных трудностей. Во-первых, многообразие элементарных механизмов деформации и возможность их последовательного или параллельного проявления, перехода от одного (или нескольких совместно действующих) механизма к другому при изменении условий нагружения (температуры, скорости деформации, напряженного состояния, степени деформации и т. д.) и структуры материала практически исключают описание деформационного поведения на основе одного элементарного механизма. Мономеханизмы или их определенная совокупность могут проявляться в узком диапазоне изменения условий деформирования, и соответственно только для этих диапазонов возможно простое теоретическое описание процесса. Следовательно, варьируя условия деформирования (например, температуру или скорость), можно изменить механизм деформации. Хорошо известным примером является переход от скольжения к двойникованию с понижением температуры или при повышении скорости деформации, характерной для ОЦК металлов. Как показывает анализ, даже в этом случае, строго говоря, чистое двойникование, исключая малые степени деформации для поликристаллов или особые условия деформации монокристаллов, не имеет места, а развивается во взаимодействии с процессами скольжения, поэтому в основном речь идет о переходе от деформации скольжением к деформации с участием двух механизмов (скольжения и двойникования) (см. [5]).  [c.196]

В. Н. Задпое, С. Л. Филлипычев. ПАМЯТЬ ФОРМЫ — свойство нек-рых твёрдых тел восстанавливать исходную форму после пластич. деформации при нагреве или в процессе разгружения. Восстановление формы, как правило, связано с мартенситным превращением или с обратимым двойникова-нием. В зависимости от величины деформации и вида материала восстановление формы может быть полным или частичным. Полное восстановление формы может происходить в сплавах с термоупругим мартенситом, таких, как Си — А1 — (Го, N1, Со, Мп), N1 — А1,Аи — Сй, Ag — Сс1, Т1 — N1, 1п — Т1, Си — гп А1, Си — 2п — 8п), и в ряде др. двойных, тройных и многокомпонентных систем. П. ф. в этих сплавах имеет место и в тех случаях, когда восстановлению формы противодействует внеш. нагрузка. Макс, величина обратимой пластич. деформации зависит от кристаллич. структуры исходной и мартенситной фаз и ограничена величиной деформации решётки при фазовом переходе или сдвигом при двойниковании. Так, при мартенситном превращении в сплавах Т( — N1 она составляет 9%. Когда возможности деформации по мартенситному механизму или за счёт обратимого передвойникования исчерпаны, дальнейшее формоизменение необратимо, т. к. оно происходит путём скольжения полных дислокаций.  [c.526]

Фрактографическая картина для всех структурных состояний зависела от уровня Д/С. На стадии I при низких значениях ДК на поверхности разрушения наблюдали небольшие участки, подобные сколу, которые обусловлены декогезией вдоль плоскости скольжения или плоскостями скола. Дальнейшее увеличение Л/С приводило к увеличению площади, занятой фасетками. Многофасеточный механизм роста трещины связан с декогезией вдоль плоскостей 110 или вдоль полос скольжения в 112 , а также, возможно, вдоль 110 или 123 в пределах пластической зоны впереди трещины. Многофасеточный скол сменялся фасеточным при средних значениях АК. Установлено, что образование фасеток усиливается в случае сплавов, деформирующихся путем грубого скольжения и вследствие воздействия агрессивной окружающей среды. Переход от мелких фасеток скола к фасеткам, равным размеру зерна, приводил к увеличению скорости роста трещины. Много-фасеточный рельеф, переходящий в фасеточный, характерен для сплавов, склонных к двойникованию. В этом случае на стадии И бороздчатый рельеф развивается на фоне  [c.114]


При анализе возможных причин перехода сплавов железа, клoкньtx к отпускной хрупкости, от транс- к интеркристаллитному разрушению с ростом размера зерна авторы [173] отмечают, что хотя с ростом зерна инициирование трещин на границах зерен двойникованием становится более вероятным, чем инициирование в зерне скольжением, само по себе зарождение микротрещин на границах зерен, атакованных двойниками, недостаточно для объяснения обсуждаемого эффекта. Дело в том, что соотношение транс- и интеркристаллитных участков роста магистральной трещины должно определяться соотношением значений вязкости разрушения пр телу и границе зерна [177], а от места зарождения исходной микротрещины зависеть не должно. Однако микроскопические наблюдения [173] позволяют предполагать, что межзеренное разрушение в твердых растворах Ре — Р происходит не вследствие роста единичной магистральной трещины, а в результате слияния системы микротрещин докритического размера, образованных независимо в местах встречи двойников с границами зерен. Возможно, что существенную роль в зарождении и объединении таких микротрещин играет аккомодационное зернограничное проскальзывание, стимулированное переходом двойника через границы зерен [173]. Понятно, что при таком механизме разрушения преимущественное зарождение микротрещин на границах зерен крупнозернистых образцов приводит к преимущественно межзеренному излому.  [c.142]

Вторым принципиально отличным от скольжения типом пластической деформации является механическое двойникование, при котором часть деформируемого кристалла переходит в новое положение, симметричное по отношению к недвойниковавшейся части кристалла (рис. 3.6, б) относительно некоторой плоскости — плоскости двойникования.  [c.124]

ИТ из средней зоны двойникования и периферийных зон скольжения была выдвинута гипотеза о двух стадиях формирования мартенситной пластины. Вначале в образовании пластины (будущего мидри-ба) главную роль играет дополнительная деформация двойнико-ванием. Из-за громадной скорости роста пластины теплота превоа-щения не успевает отводиться и температура на поверхности пластины сильно возрастает, что приводит к смене механизма дополнительной деформации переходу от двойникования к дислокационному скольжению (хорошо известно, что с понижением температуры в металлах с о. ц. к. решеткой при быстрой пластической деформации скольжение заменяется двойникованнем).  [c.234]


Смотреть страницы где упоминается термин Переход от скольжения к двойникованию : [c.229]   
Смотреть главы в:

Деформационное упрочнение и разрушение поликристаллических металлов  -> Переход от скольжения к двойникованию



ПОИСК



Двойникование



© 2025 Mash-xxl.info Реклама на сайте