Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вывод и обоснование условий устойчивости

Вывод и обоснование условии устойчивости. Обозначим через [) (х) последовательность собственных функций, а через — соответствующую последовательность собственных значения краевой задачи  [c.249]

Замкнутая система, в которой объект состоит из трех и более последовательно включенных элементов первого порядка, становится неустойчивой, если общий коэффициент усиления превосходит некоторое значение. Физическое объяснение явления неустойчивости приводится в главе, посвященной частотным характеристикам. В этой главе приводится математическое обоснование неустойчивости и выводится условие устойчивости некоторых простейших систем, устойчивых в разомкнутом состоянии. Более общие критерии устойчивости Найкви-ста и Рауса приведены в приложении.  [c.101]


Во-вторых, ограничения пригодны только для таких изменений состояния системы, при которых меняются интенсивные свойства фаз, так как иначе частные производные сопряженных переменных либо тождественно равняются нулю, как, например, (dPjdV)T при равновесии жидкость—пар в однокомпо-нентной системе, либо не существуют (бесконечны), как, например, Ср при температуре плавления индивидуального вещества. В гомогенных системах такие процессы также должны учитываться, что делалось выше при выборе и обосновании знака неравенства (12.29), но они, как нетрудно заметить, не влияют на ограничения (13.9) — (13.11) и другие, которые получаются из (12.29) при условии постоянства хотя бы одной из термодинамических координат системы. Этим исключается влияние процессов, единственным результатом которых было бы изменение массы системы. Так, неравенства (13.9) — (13.11), (13.21) относятся к закрытым системам и для их вывода важно знать значение не полного определителя формы (12.29), а его главных миноров. Последние должны быть определены положительно в термодинамически устойчивой системе (см. примечание на с. 123).  [c.128]

В седьмой главе изложена теория флуктуаций термодинамических величин в равновесных системах и рассмотрены ее приложения к обоснованию фундаментального положения неравновесной термодинамики — соотношений взаимности Онзагера. Представление о флуктуациях выходит за рамки классической равновесной термодинамики, и в учебных пособиях по термодинамике теория флуктуаций обычно не излагается. Теория флуктуаций использует как положения классической термодинамики, так и выводы статистической механики. В связи с этим изложены некоторые положения классической равновесной статистической механики Гиббса и на их основе дан вывод формулы Больцмана для расчета флуктуаций термодинамических величин в изолированных системах и далее — в открытых системах, обменивающихся с окружающей средой энергией и веществом. Рассмотрены условия термодинамической устойчивости систем по отношению к непрерывным изменениям параметров состояния и их взаимосвязь с флуктуациями термодинамических переменных. Получены выражения для средних квадратов флуктуаций основных термодинамических величин. Проанализированы границы применимости термодинамической теории флуктуаций особое внимание уделено предположе-  [c.5]


Во-первых, общие уравнения нелинейной теории упругости используются для обоснованного вывода уравнений устойчивости для тонких и тонкостенных тел. Работы этого направления (В. В. Новожилов, 1940, 1948 В. В. Болотин, 1956, 1965 А. И. Лурье, 1966, и др.) уже обсуждались в 3. Во-вторых, решения задач, полученные на основе теории упругости, могут быть использованы для оценки точности и установления границ применения известных приближенных решений. К этому направлению относятся работы Л. С. Лейбензона (1917) и А. Ю. Ишлинского (1954). Заметим, что в этих работах в качестве уравнений для описания форм равновесия, смежных с невозмущенной формой, предлагалось использовать классические уравнения теории упругости внешние силы входили при этом только в возмущенные граничные условия. Этот подход обсуждался недавно А. Н. Гузем (1967). В-третьих, необходимость в привлечении уравнений теории упругости возникает в задачах об устойчивости пластин и оболочек, находящихся в контакте с упругим материалом пониженной жесткости. Применительно к слоистым пластинам с мягким наполнителем этот подход развивался А. П. Вороновичем (1948), В. Н. Москаленко (1964) и другими. Устойчивость цилиндрических оболочек с мягким упругим ядром рассматривалась А. П. Варваком (1966). Типичным для этих задач является применение теории пластин и оболочек к несущим слоям и трехмерной теории упругости — к заполнителю.  [c.346]


Смотреть страницы где упоминается термин Вывод и обоснование условий устойчивости : [c.18]   
Смотреть главы в:

Теория ползучести неоднородных тел  -> Вывод и обоснование условий устойчивости



ПОИСК



Вывод

Вывод условия устойчивости

Вывод-вывод

Обоснование

Обоснование условия устойчивости

Условие устойчивости



© 2025 Mash-xxl.info Реклама на сайте