Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Насыщенный и влажный пар жидкости

Характеристики пленок представляют интерес при исследовании следующих процессов 1) течение жидкой пленки, образующейся при расширении насыщенного и влажного пара в решетках турбомашин 2) течение охлаждающей пленки в теплозащитных газовых завесах, образующихся при впрыскивании жидкости или вдувании холодного газа через специальные щели или поры в обтекаемой поверхности 3) движения жидкой пленки на оплавляющихся (вследствие аэродинамического нагрева при гиперзвуковых скоростях) поверхностях и др. Таким образом, задачи, связанные с образованием и течением пленок, весьма разнообразны и имеют большое прикладное значение. Ниже этим задачам и будет уделено основное внимание.  [c.278]


Пары бывают насыщенные и перегретые. Первые, в свою очередь, разделяются на сухие насыщенные и влажные. Для выяснения свойств паров и особенностей каждого состояния ниже рассматривается процесс превращения жидкости в пар.  [c.122]

НАСЫЩЕННЫЕ, ВЛАЖНЫЕ И ПЕРЕГРЕТЫЕ ПАРЫ ЖИДКОСТИ  [c.126]

Линии фазовых превращений в координатах давление — температура (рис. 10) являются изображениями термодинамического равновесия д в у х ф а з о в ы х систем линия испарения — равновесие пара и жидкости (насыщенный или влажный пар) линия плавления — равновесие жидкой и твердой фаз линия сублимации— равновесие пара (газа) и твердой фазы. Уравнение каждой линии фазовых превращений (фj) характеризует зависимость температуры рассматриваемого фазового превращения от давления (или наоборот)  [c.24]

Различают пар насыщенный и перегретый. Пар, находящийся в динамическом равновесии со своей жидкостью и имеющий одинаковые с жидкостью температуру и давление, называется насыщенным. Насыщенный пар, в который при парообразовании попадают капельки котловой воды, называется влажным насыщенным, а пар без таких капелек — сухим насыщенным. Если сухому насыщенному пару сообщить теплоту при данном постоянном давлении, то получится перегретый пар, не содержащий влаги, и его температура будет выше температуры кипения при данном давлении.  [c.7]

Двухфазная смесь, представляющая собой пар со взвешенными в нем капельками жидкости, называется влажным насыщенным паром. Массовая доля сухого насыщенного пара во влажном называется степенью сухости пара и обозначается буквой х. Массовая доля кипящей воды во влажном паре, равная 1—х, называется степенью влажности. Для кипящей жидкости х = 0, а для сухого насыщенного пара х= 1. Состояние влажного пара характеризуется двумя параметрами давлением (или температурой насыщения ts, определяющей это давление) и степенью сухости пара.  [c.35]

Все точки горизонталей между кривыми II и III соответствуют состояниям влажного насыщенного пара, точки кривой II определяют состояние кипящей воды, точки кривой III — состояния сухого насыщенного пара. Влево от кривой И до нулевой изотермы лежит область некипящей однофазной жидкости, вправо от кривой III — область перегретого пара. Таким образом, кривые // и III определяют область насыщенного пара, отделяя ее от области воды и перегретого пара, и поэтому называются пограничными. Выше точки К, где пограничных кривых нет, находится область однофазных состояний, в которой нельзя провести четкой границы между жидкостью и паром.  [c.36]


В насыщенном паре над зеркалом испарения находятся мельчайшие капельки жидкости, равномерно распределенные по всей массе пара. Механическая смесь, состоящая из сухого пара и мельчайших капелек жидкости, называется влажным паром. Массовая доля сухого пара во влажном называется степенью сухости и обозначается буквой х  [c.173]

Массовая доля кипящей жидкости во влажном паре, равная (1 — х)у называется степенью влажности. Для кипящей жидкости при температуре насыщения л = О, а для сухого пара л 1, следовательно, степень сухости может меняться только в пределах от О до 1. Очевидно, состояние влажного пара определяется двумя величинами температурой или давлением и каким-либо другим параметром, например, степенью сухости.  [c.173]

Из точки 1 жидкость при температуре и соответствующем давлении насыщения направляется к дроссельному вентилю 3, где происходит процесс дросселирования (процесс 1-2). Из дроссельного вентиля выходит влажный пар. Поступая затем в испаритель 4, влажный пар воспринимает теплоту и содержащаяся в нем жидкость испаряется (процесс 2-5). Из испарителя пар направ--ляется снова в компрессор. Холодильный коэффициент этой установки равен  [c.182]

Параметры влажного пара. Относительное содержание паровой фазы в двухфазной системе, состоящей из насыщенного пара и находящейся с ним в равновесии жидкости (равновесную смесь насыщенного пара с жидкостью называют также влажным паром ), обозначается, как уже отмечалось ранее, через X и называется степенью сухости влажного пара  [c.271]

Обычно считают, что во влажном паре жидкая фаза находится в виде мелких капель жидкости, взвешенных в насыщенном паре. Приводимые ниже выводы относятся как к этому случаю, так и к случаю, когда жидкая фаза является сплошной и. занимает определенную часть объема (т. е. жидкие капельки слились одна с другой).  [c.271]

Основные процессы с влажным паром. В дальнейшем под влажным паром подразумевается смесь насыщенного пара и жидкости, находящихся в равновесии, в том числе и такая смесь, в которой жидкость находится в виде взвешенных в паре мелких капель. Ниже рассматриваются только обратимые процессы изменения состояния влажного пара.  [c.280]

Степень сухости — это массовая доля сухого насыщенного пара во влажном насыщенном паре. Степень сухости может быть задана в долях единицы или в процентах. Например, если степень сухости д = 0,5, то в смеси содержится половина жидкости и половина пара если л = 0,9, то влажный насыщенный пар состоит на 90 % из сухого насыщенного пара и на 10 % из жидкости, причем чем больше степень сухости, тем пар суше.  [c.91]

При переходе смеси в состояние, характеризуемое на диаграмме точкой с", последняя капля жидкости превращается в пар, который называется сухим насыщенным паром. Следовательно, сухой насыщенный пар — это пар, полностью освобожденный от примесей жидкости. Все точки на линии б —с" характеризуют состояние влажного пара. Чем правее располагается точка на линии б —с", тем пар суше, и наоборот.  [c.63]

Линия АВ характеризует значение удельных объемов жидкости при температуре О °С, линия МК — состояние кипящей жидкости, а линия NK — состояние сухого насыщенного пара. Таким образом, линии АВ, МК и ЫК делят диаграмму на три области. Область, лежащая в криволинейном треугольнике МКК, соответствует влажному насыщенному пару (область насыщения). Состоянию перегретого пара соответствует область, лежащая правее и над верхней пограничной кривой NK. Область, заключенная между линией АВ и нижней пограничной кривой МК, характеризует жидкую фазу.  [c.65]

Смесь жидкости и сухого насыщенного пара называют влажным паром (например, состояние в точке е).  [c.88]

На рис. 8.5 изображена sT-диаграмма. Точки А, В, Е, С, D на sT-диаграмме, так же как и на ир-диаграмме (см. рис. 8.1), определяют при давлении р следующие состояния соответственно жидкости при / = 0 С, кипящей жидкости при температуре насыщения влажного пара, сухого насыщенного пара, перегретого пара.  [c.93]


Рассмотрим адиабаты В-В и С-С (рис. 9.4, б). Первый адиабатный процесс расширения В-В, как видно из рис. 9.4,6, сопровождается частичным испарением жидкости, а второй С-С— наоборот—частичной конденсацией пара. Это явление обусловлено тем, что теплоемкость сухого пара с" отрицательна, а кипящей жидкости с положительна. Путем сжатия, например отточки В к точке В (рис. 9.4,6), можно перевести влажный пар с малой степенью сухости к в кипящую жидкость а влажный пар с большой степенью сухости х путем сжатия, например от точки 2 к точке /, можно перевести в сухой насыщенный (а .= 1) и далее в перегретый.  [c.100]

Рассмотрим свойства влажного пара. Относительное содержание паровой фазы х в двухфазной системе, состоящей из насыщенного пара и находящейся с ним в равновесии жидкости, называется степенью сухости.  [c.437]

Обычно считают, что во влажном паре жидкая фаза находится в виде мелких капель жидкости, взвешенных в насыщенном паре. Приводимые ниже выводы относятся как к этому случаю, так и к случаю, когда жидкая фаза является сплошной и занимает определенную часть объема (т. е. все жидкие капельки сливаются друг с другом). Если X = I, то влажный пар называют иногда сухим паром. Следовательно, сухой пар — это насыщенный пар, не содержащий капель жидкости.  [c.437]

На рис. 8.45 представлен теоретический цикл паровой компрессионной холодильной машины. Процесс 4—/ представляет собой испарение жидкого холодильного агента при температуре и давлении за счет теплоты охлаждаемого тела. Состояние влажного пара, засасываемого компрессором, характеризуется точкой 1. Компрессор сжимает пар адиабатически по линии 1—2. Состояние в точке 2 соответствует сухому насыщенному пару, а в некоторых циклах — влажному или перегретому пару. Сжатый холодильный агент поступает затем в конденсатор, где осуществляется процесс отдачи теплоты (линия 2—3) при постоянном давлении и соответствующей ему температуре Тд. Адиабатическое расширение жидкости по линии 3—4 обусловливает необходимость использования расширительного цилиндра.  [c.559]

Ознакомимся с некоторыми терминами, которые следует четко усвоить для понимания последующего материала и работы со справочными данными о свойствах веществ. Приняты следующие названия характерных состояний точка а — кипящая жидкость точка Ь — сухой насыщенный пар (пар, находящийся в равновесии с жидкостью, становится сухим , если, не изменяя р а Т, удалить из системы жидкую фазу механическим путем) точка с — влажный пар (смесь кипящей жидкости и сухого насыщенного пара, область ж- -п) точка е (или ) — перегретый пар (газообразное состояние вещества, область п поблизости от пограничной кривой пара среда обладает свойствами реального газа — см. 11, при удалении точки, изображающей состояние вещества, вправо и вверх имеем в пределе идеальный газ) точка й (или /) — жидкость (жидкое состояние вещества, область ж).  [c.108]

Компрессор 1 сжимает влажный пар хладоагента до давления р по линии 1—2. Затраченная на адиабатное сжатие работа расходуется на повышение внутренней энергии пара. В конце сжатия (точка 2) пар становится сухим насыщенным. Нагнетаемый компрессором пар проходит через охладитель 2, который является в данном случае конденсатором, так как в нем пар хладоагента превращается в жидкость вследствие отдачи теплоты парообразования окружающей среде . Процесс 2—3 протекает при постоянных давлении и температуре. Жидкость в состоянии насыщения направляется в дроссельный (редукционный) вентиль 3, где происходит ее дросселирование без отдачи внешней работы (линия 3—4) с понижением давления от р до р2 и температуры от Т до То,. Жидкость частично испаряется, превращаясь во влажный насыщенный пар, который направляется в испаритель, установленный в камере 4, где находятся охлаждаемые тела, и отбирает у них теплоту. Степень сухости влажного пара при этом возрастает.  [c.223]

Если Рк<Ра, то адиабатный процесс заканчивается в области влажного пара. Для расчета такого процесса дополнительно находятся энтропия в точке А по (10.18) температура пара в конце процесса, равная температуре насыщения при конечном давлении Рк, изобарно-изотермический. потенциал (рг и энтальпии кипящей жидкости Л г и сухого насыщенного пара /г"г при конечном давлении. Все это позволяет определить энтальпии в конце изоэнтропного расширения Л2 и йгд (10.20), аналогичные энтальпиям / 4 и /г4А для процесса 3—4д. Энтальпия в конце действительного процесса расширения йгд при этом находится по (10.48) применительно к процессу А—2д, аналогичному процессу А—4д на рис. 10.26,е. Заканчивается этот фрагмент программы расчетом степени сухости пара за турбиной д 2д по (10.52). В результате расчета процесса 1—2д находятся энтальпии пара перед турбиной, за турбиной (для обратимого и необратимого процессов) и конечная степень сухости Х2д. После этого аналогично рассчитывается процесс 3—4д, в результате чего находятся Аз, А4, Л4Д и Хщ (рис.  [c.291]

Отрезок изобары Ь-с отвечает процессу парообразования. Между точками Ь и с имеется смесь жидкости и сухого насыщенного пара. Если считать, что при этом капельки жидкости равномерно распределены в паре, то на указанном участке изобары Ь — с мы будем иметь влажный пар с изменяющимся содержанием в нем сухого насыщенного пара от X = О в точке 6 до х = 1 в точке с. Эту массовую долю сухого насыщенного пара во влажном паре, обозначенную нами буквой X, называют степенью сухости. Аналогично содержание жидкой фазы во влажном паре называют степенью влажности или влажностью, ее будем обозначать (1 — х). Нетрудно видеть, что при х = О мы будем иметь кипящую жидкость, а при х = 1 - сухой насыщенный пар. Впредь параметры влажного пара будем обозначать индексом х .  [c.32]


На рис. 4-3 показаны графики распределения локальных давлений и максимального переохлаждения пара по обводу профиля С-9012А для перегретого, насыщенного и влажного пара на входе перед решеткой по параметра.м полного торможения (Ма = = 0,7 Re = 2,5-10 г = 0,75 Д,р = 0,1). Модальный размер капель иа входе в решетку <з и был значительным п составлял около 80 мкм. Анализируя эти графики, можно отметить, что при переходе от перегретого к- сухому иасыщенному, а также к влажному пару относительное давление возрастает во всех точках обвода профиля. Однако наиболее интеясивное увеличение давления обнаруживается на конфузорных участках, а наименее интенсивное — па диффу-зорных участках (спинки). Этот результат объясняется испарением капель в конфузор-ном потоке и его увлажнением в развитом диффузорном потоке. В процессе расширения влажного пара температура капель оказывается выше, чем температура переохлажденного пара и (при больших размерах капель) чем температура насыщения. При торможении на диффузорных участках температура пара повышается и, таким образом, температура капель может быть ниже температуры пара, что вызывает частичную конденсацию (увлажнение) пара. Ускорение перегретого и переохлажденного пара осуществляется только в результате геометрического воздействия. Поток переохлажденного пара с каплями жидкости испытывает также расходное и тепловое воздействие. При наличии скольжения (а оно неизбежно имеет место в каналах решетки) определенную роль играет механическое взаимодействие фаз.  [c.81]

Линии фазовых превращений в координатах давление — температура определяют термодинамическое равновесие двухфазовых систем. Например, на линии испарения или насыщения имеет место равновесие пара и жидкости (насыщенный или влажный пар), на линии плавления — равновесие жидкой и твердой фаз и т. д. Уравнение каждой такой линии — это уравнение зависимости температуры от давления  [c.17]

Насышрнным называется пар, который образовался в процессе кипения и находится в термическом и динамическом равновесиях в жидкостью. Насыщенный пар по своему состоянию бывает сухим насыщенным и влажным насыщенным.  [c.61]

В 1 второй части описывается процесс парообразования, устанавливаются основные понятия и их определения, а также дается диаграмма р—V водяного пара с нанесенными на ней предельными кривыми. Здесь же дается и формула объема влажного пара. В 2 Применение первого принципа термодинамики к насыщенному пару говорится о теплоте, расходуемой на подогрев жидкости и процесс парообразования, внутренней и В1нешней работе и энергии сухого и влажного пара.  [c.122]

Схема холодильной компрессорной установки, работаюш,ей на парах аммиака (NH3), представлена на рис. 21-8. В компрессоре сжимается аммиачный сухой насыщенный пар или влажный пар с большой степенью сухости по адиабате 1-2 до состояния перегретого пара в точке / (рис. 21-9). Из компрессора пар нагнетается в конденсатор, где полностью превращается в жидкость (процесс 1-5-4). Из конденсатора жидкий аммиак проходит через дроссельный вентиль, в котором дросселируется, что сопровождается ионижением температуры и давления. Затем жидкий аммиак с низкой температурой поступает в охладитель, где, получая теплоту (в процессе 3-2), испаряется и охлаждает рассол, который циркулирует в охлаждаемых камерах. Процесс дросселирования, как необратимый процесс, изображается на диаграмме условной кривой 4-3.  [c.336]

Промежуточная темная влажная зона включает в себя переход от сухой внутрипоровой поверхности к поверхности, покрытой тонкой микропленкой. Прорывающиеся через насыщенную жидкостью пористую структуру паровые микроструи образуют периодически (где внешняя поверхность влажная без пленки) или постоянно (где поверхность покрыта микропленкой) разрушающиеся полусферические тонкие оболочки. Таким образом, промежуточная темная влажная зона - это постепенное увеличение потока пара и сокращение потока жидкости в режиме течения ее в виде обволакивающей частицы материала микропленки.  [c.80]

Пар, полученный при испарении всей жидкости (точка п), — сухой насыщенный. Удельный объем пара в этой точке обозначим через v". При проведении процесса парообразования при другом даиле-нни соответственно получим точки п, п". Кривая п п п" представляет собой верхнюю (правую) пограничную кривую. Пересечение верхней и нижней пограничных кривых определяет положение критической точки /< Для воды критической точке соответствует = 221,048 бар, Т р = 647,15 К Ццр = 0,0031 m Vks. На рис. 9.5 в области влажного насыщенного пара пунктирными линиями показаны линии постоянной сухости.  [c.110]

В настоящее время в криогенной технике широко используют метод адиабатного расширения для получения низких температур. Процесс расширения газа, близкий к изоэптроиному, осуществляется в этих установках в иоршиевых детандерах и турбодетандерах с отдачей внешней работы. При расширении в области влажного пара понижение температуры в адиабатных процессах (dq = 0) обратимого расширения (ds = 0) и дросселирования одинаково. Однако состояния по завершении каждого из процессов 7—9 и 7—8 различны. Трение в необратимом процессе дросселирования 7—8 привело к увеличению паросодержа-ния потока в конце процесса по сравнению с обратимым процессом 7—9. Увеличепие паросодержания будет тем выше, чем больше работа расширения. Для паровых холодильных машин процесс расширения осуществляют от состояния насыщенной или ненасыщенной жидкости, В этом случае работа расширения в детандере сравнительно мала. Поэтому в паровых холодильных машинах, учитывая также высокую стоимость детандера в сравне-  [c.123]

В котле Г (рис. 12,1) при подводе теплоты (теплоты сгорания топлива) образуется сухой насыщенный пар высокого давления р . На диаграммах (рис, 12.2) это состояние характеризуется точкой /, лежащей на пересечении правой пограничной кривой х = 1 и изобары. Образовавшийся пар поступает в расширительный цилиндр РЦ, где адпабатно расширяется до низкого давления в процессе 1—2, совершая полезную работу I. Влажный пар в со стоянии 2 поступает в конденсатор КД, где от него отводится теплота q. . В процессе 2—3 происходит частичная конденсация пара при р — onst и t = onst. Процесс конденсации в цикле Карно не доводится до получения насыщенной жидкости, а в точке 3  [c.200]

Удельный объем влажного пара зависит от соотношения масс его составных частей сухого насыщенного пара и жидкости Б смеси массой 1 кг. Массовая доля пара х в смеси называется степенью су хости, а массовая доля жидкости (1—л )— степенью влажности.  [c.88]

Исходными для определения параметров состояния влажного воздуха по / г-диаграмме (рис. 3-22) служат показания влажного и сухого термометров психрометра. В несколько упрощенном виде принцип действия психрометра можно представить так. У поверхности жидкости, находящейся в чашке, куда опущена ткань, окружающая шарик мокрого термометра психрометра, появляется в процессе испарения воды тонкий слой насыщенного воздуха, образующийся в результате вылета из жидкости молекул ее, преодолевших поверхностное натяжение жидкости. Так как дальнейшее проникновение молекул жидкости из этого слоя в воздух затруднено вследствие столкновения их с молекулами воздуха, концентрация молекул жидкости в тонком слое, прилегающем к поверхности жидкости, велика и с достаточной степенью точности можно считать, что воздух в этом слое насыщен водяным паром. Парциальное давление этого пара есть давление насыщенного пара при температуре поверхностного слоя жидкости, показываемом мокрым термометром (при точных расчетах в это показание вносятся поправки). Сухой же термометр показывает температуру ненасыщенного влажного воздух а в помещении. В подробных курсах технической термодинамики доказывается, что энтальпия насыщенного воздуха над поверхностью жидкости и ненасыщенного воздуха в помещении, где находится психрометр, (почти) одинаковы. Отсюда нахождение в / f-диаграмме точки, характеризующей состояние ненасыщенного воздуха в помещении по показаниям психрометра, сводится к следующему. На линии ср = 100% находят точку соответственно показанию мокрого термометра. Из нее проводят линию 1 = = onst. Очевидно, на этой линии находится точка, характеризующая состояние воздуха в помещении, в котором находится психрометр. Взяв пересечение линии I = onst с изотермой сухого термометра, находят искомую точку. По ее координатам и с помощью линий /d-диаграммы находят все параметры воздуха в помещении (см. пример 3-17).  [c.145]



Смотреть страницы где упоминается термин Насыщенный и влажный пар жидкости : [c.430]    [c.39]    [c.43]    [c.24]    [c.197]    [c.206]    [c.214]    [c.162]    [c.7]    [c.217]    [c.32]   
Смотреть главы в:

Термодинамика  -> Насыщенный и влажный пар жидкости



ПОИСК



Влажный пар

Насыщение

Насыщенность

Пар насыщенный



© 2025 Mash-xxl.info Реклама на сайте