Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обобщенный закон Гука в общем случае напряженного состояния

ОБОБЩЕННЫЙ ЗАКОН ГУКА В ОБЩЕМ СЛУЧАЕ НАПРЯЖЕННОГО СОСТОЯНИЯ  [c.79]

Обобщенный закон Гука и потенциальная энергия деформации в общем случае напряженного состояния  [c.252]

Из этого перечня видно, что книга не претендует на освещение всех вопросов теории упругости анизотропного тела, а излагает только некоторые, наиболее изученные, но еще не приведенные в систему. В ней не содержится исследований по изгибу и устойчивости анизотропных пластинок, так как эти вопросы достаточно полно разработаны в нашей книге <Анизотропные пластинки . Задача о плоской деформации и обобщенном плоском напряженном состоянии изложена сжато (в связи с более общей задачей), причем из частных случаев рассмотрены только наиболее важные. В книге не затронуты проблемы равновесия и устойчивости анизотропных оболочек, а также динамики упругого тела (за исключением общих уравнений движения) Во всех случаях предполагается, что деформации являются упругими и малыми, а материал следует обобщенному закону Гука. В конце имеется перечень литературы, куда, кроме работ, излагающих специальные вопросы, включены также некоторые основные курсы теории упругости.  [c.12]


Формулы (6.29) выражают обобщенный закон Гука для изотропного тела, т, е. зависимость между линейными дес]юрмациями и главными напряжениями в общем случае трехосного напряженного состояния. Заметим, что сжимающие напряжения подставляют в эти формулы со знаком минус . Из формул (6.29) легко получить формулу закона Гука для плоского напряженного состояния. Например, для случая 02 = О  [c.177]

Закон трения Ньютона записан для движения простейшего вида и, следовательно, простейшего вида деформации частиц жидкости. В общем случае, при рассмотрении произвольного движения жидкости необходимо обобщение закона трения. Если продолжать аналогию с теорией упругости, то такое обобщение соответствует переходу от закона Гука для простого растяжения к обобщенному закону Гука при сложном напряженном состоянии.  [c.139]

Приведенные в первой главе формулы и уравнения справедливы для любой сплошной среды, независимо от того, является она упругой, пластической или находится в любом другом физическом состоянии. Для различных физических состояний сплошной среды физические уравнения различны. Рассмотрим среды или тела, для которых зависимости между деформациями и напряжениями носят линейный характер, т. е. подчиняются обобщенному закону Гука. По упругим свойствам тела разделяются, с одной стороны, на однородные и неоднородные, а с другой — на изотропные и анизотропные. Тела, в которых упругие свойства во всех точках одинаковы, называются однородными, а тела с различными упругими свойствами в различных точках тела — неоднородными. Неоднородность непрерывная, когда упругие свойства тела от точки к точке изменяются непрерывно, и дискретная, когда упругие свойства тела от точки к точке испытывают разрывы или скачки. Тела, упругие свойства которых во всех направлениях, проведенных через данную точку, одинаковы, называют изотропными, а тела, упругие свойства которых во всех направлениях, проведенных через данную точку, различны,— анизотропными. В зависимости от структуры тело может быть изотропным или анизотропным и одновременно однородным или неоднородным [91]. В случае однородного упругого тела, обладающего анизотропией общего вида, зависимость между компонентами тензора напряжений и тензора деформаций в точке линейная  [c.68]


В настоящей главе рассматриваются частные случаи упругого равновесия тела с прямолинейной анизотропией, ограниченного цилиндрической поверхностью, на которое действуют поверхностные и объемные усилия, нормальные к образующей и не меняющиеся по длине. Если коэффициенты ац, Aij также не меняются по длине и плоскости поперечных сечений совпадают с плоскостями упругой симметрии, то эти сечения остаются плоскими и после деформации и напряженно-деформированное состояние известно под названием плоской деформации. В более общих случаях анизотропии, когда плоскости упругой симметрии пересекают геометрическую ось под углом не равным 90°, или параллельны ей, или совсем отсутствуют, то деформацию уже нельзя назвать плоской ее можно назвать обобщенной плоской деформацией . В главе 4 исследование ведется в декартовой системе координат, т. е. предполагается, что обобщенный закон Гука выражается уравнениями (18.3), где atj — постоянные. Рассмотрен также случай прямолинейно-ортотропного неоднородного тела и ряд частных задач.  [c.131]

Общие замечания. До сих пор мы рассматривали упругие оболочки, подчиненные обобщенному закону Гука. Такое допущение применимо в основном к расчету в достаточной степени толстых упругих оболочек. В случае тонких оболочек подобное допущение, вообще говоря, может привести к существенным расхождениям с наблюдаемой в действительности картиной напряженного и деформированного состояний оболочки.  [c.153]

Рассмотрим соотношения упругости. Пусть обшивки трехслойной конструкции представляют тонкие многослойные оболочки. Будем считать, что каждый отдельный слой обшивки выполнен из ортот-ропного материала и оси упругой симметрии в общем случае не совпадают с- направлениями координатных линий. Для линейно упругого материала связь напряжений с деформациями будет подчиняться обобщенному закону Гука, который в случае плоского напряженного состояния можно представить как  [c.200]

В общем случае, при произвольных и различных диаграммах а—е материалов, напряженные состояния в геометрически подобных телах согласно классической теории подобия рекомендуется считать неподобными, так как физические уравнения упругопластичных материалов не допускают пропорциональных преобразований из-за переменности соответствующих коэффициентов в выражении обобщенного закона Гука  [c.308]


Смотреть страницы где упоминается термин Обобщенный закон Гука в общем случае напряженного состояния : [c.146]   
Смотреть главы в:

Сопротивление материалов  -> Обобщенный закон Гука в общем случае напряженного состояния



ПОИСК



Гука обобщенный

Гука)

Закон Гука

Закон Гука (см. Гука закон)

Закон Гука обобщенный

Закон обобщенный

Закон сил общий

Обобщенный закон Гука и потенциальная энергия деформации в общем случае напряженного состояния

Общий случай

Состояние напряженное обобщенное



© 2025 Mash-xxl.info Реклама на сайте