Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение тела вокруг неподвижной точки. Первые интегралы

Показать, что в задаче исследования движения тяжелого твердого тела вокруг неподвижной точки достаточно найти 4 независимых первых интеграла, чтобы определить траектории движения. Перечислить эти интегралы в случаях Эйлера, Лагранжа-Пуассона, Ковалевской. Какие первые интегралы являются общими для всех этих случаев  [c.702]

Задача исследования движения твердого тела вокруг неподвижной точки приводится к нахождению четвертого первого интеграла системы уравнений (III. 16). Именно такая постановка общей задачи о движении абсолютно твердого тела соответствует направлению исследований К. Якоби.  [c.415]


Пример 2 (Устойчивость вращения тяжелого тела вокруг неподвижной точки в СЛУЧАЕ Лагранжа ). Движение тяжелого твердого тела вокруг неподвижной точки описывается системой дифференциальных уравнений (32), (35) п. 105. В случае Лагранжа А = а = Ь = Ог/ уравнения движения имеют четыре первых интеграла  [c.520]

Теорема. В задаче о движении твердого тела вокруг неподвижной точки О при отсутствии внешних сил имеется четыре первых интеграла М , Му, М , Е.  [c.120]

Интегралы эти понятны непосредственно из общих теорем. Первый интеграл является интегралом живых сил, второй интеграл — интеграл момента количеств движения. В самом деле. Действительные неремещения твердого тела с одной неподвижной точкой находятся среди возможных. Работа активных сил, приводящихся к одной равнодействующей, проходящей через неподвижную точку, на действительном перемещении равна нулю следовательно, имеет место интеграл живых сил 2Т = h. Далее, твердое тело может вращаться вокруг любой неподвижной оси, проходящей через неподвижную точку О. Результирующий момент действующих сил относительно неподвижной точки равен нулю, поэтому из общей теоремы о моменте количеств движения следует,  [c.185]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]



Смотреть страницы где упоминается термин Движение тела вокруг неподвижной точки. Первые интегралы : [c.97]    [c.214]   
Смотреть главы в:

Курс теоретической механики. Т.2  -> Движение тела вокруг неподвижной точки. Первые интегралы



ПОИСК



Движение вокруг неподвижной оси

Движение вокруг неподвижной точки

Движение тела вокруг неподвижной

Движение тела вокруг неподвижной точки

Дифференциальные уравнения движения твердого тела вокруг неподвижной точки. Динамические уравнения Эйле. 98. Первые интегралы

Интеграл движения

Интегралы движения первые

Интегралы первые

Неподвижная точка

Тело с неподвижной точкой

Точка — Движение

Уравнения движения тяжелого твердого тела вокруг неподвижной точки и их первые интегралы



© 2025 Mash-xxl.info Реклама на сайте