Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гаусса Герца принцип наименьшей кривизн

Идеи Гаусса были развиты в конце XIX века Герцем, которому принадлежит истолкование принципа Гаусса как принципа наименьшей кривизны (наименьшей кривизны траектории изображающей точки).  [c.267]

Гаусс (1777—1855). Несколько в стороне от главного направления лежит принцип наименьшего принуждения , установленный выдающимся математиком Гауссом. В этом принципе не используется в качестве минимизируемой функции интеграл по времени. Гаусс вводит для произвол-ьного момента времени определенную положительную величину, называемую принуждением , и минимизацией этой величины получает ускорения, считая скорости и координаты в этот момент заданными. Принцип Гаусса является истинным минимальным принципом, а не просто принципом стационарного значения. Однако он не обладает аналитическими преимуществами других принципов, поскольку принуждение включает в себя, помимо позиционных координат и скоростей, еще и ускорения. Герц дал геометрическую интерпретацию принуждения Гаусса, представив его как геодезическую кривизну в пространстве конфигураций  [c.392]


Наиболее перспективна, по-видимому, тенденция рационального использования образов всех трёх картин [16]. К этому наименее подготовлен подход Герца. Классический принцип прямейшего пути сформулирован как эмпирический основной закон , объединяющий обычный закон энергии и принцип наименьшего принуждения Гаусса в одно утверждение [27]. Позже Дж.Л. Синг с помощью введённого им понятия относительной кривизны обосновал более общее утверждение принципа, допускающее наличие силового поля [137.  [c.84]

Поскольку (17) совпадает с принуждением по Гауссу, принцип наименьшей (динамической) кривизны (17), сформулированный Сингом, тождествен принципу наименьшего принуждения. Далее будем изучать свойства траектории, изображающей точки с помощью понятия кривизны по Герцу (16) геометрической кривизны [27]), а также понятия относительной геометрической кривизны двух траекторий [137], определяемой как модуль разности векторов кривизны этих траекторий. Например, если траектории 1 и 2 имеют векторы кривизны К1 и К2, то в равенстве  [c.91]

Принцип Даламбера — Лагранжа для идеальных связей в аспекте тензорного исчисления и неголономной дифференциальной геометрии установил 3. Горан . Соответствующее обобщение принципа наименьшей кривизны Гаусса — Герца принадлежит 3. Гораку и Дж. Сингу . Этот принцип является более общим ао сравнению с принципом Даламбера — Лагранжа, так как включает в себя и случай пеидеальных связей.  [c.104]

Горак выводит для склерономной и реономной неголономных систем в голономных и неголономных координатах, а также в склерономных параметрах обобщенные уравнения Ньютона, Лагранжа — Эйлера и Аппеля — Гиббса. Из этих уравнений получаются как частные случаи уравнения Больцмана, Чаплыгина — Воронца, Ценова и др. Из уравнений Горака можно получить также обобщенный принцип Гамильтона — Остроградского и обобщенные уравнения неголономной динамики в канонической и естественной формах. С целью упрощения установленных им уравнений 3. Горак строит неголономное многообразие со специальной метрикой — вселенную системы. Во вселенной системы, как оказывается, уравнения Лагранжа—Эйлера и Аппеля — Гиббса получают весьма простой вид. Во вселенной обобщаются также вариационные принципы механики — принципы Гаусса — Герца наименьшей кривизны и Гамильтона — Остроградского наименьшего действия. 3. Горак показывает, что принцип Гамильтона — Остроградского эквивалентен уравнениям линии вселенной . Рассматривая время как временной параметр и вводя понятие пространственно-временной силы , 3. Го-раку удалось значительно упростить выражения дифференциальных урав- 105 нений движения неголономной системы.  [c.105]


Г. п. тесно связан с принципом наименьшего цринуждения (см, Гаусса принцип), поскольку величина Z, наз. принуждением, пропорц. квадрату кривизны при идеальных связях (см. Связи механические) оба принципа имеют одинаковое матем. выражение 6Z=0. Г. п. был применён нем. учёным Г. Герцем (1894) для построения его механики, в к-рой действие активных сил заменяется введением соответствующих связей. С. м. Тарг. ГЕТЕРОГЕННАЯ СИСТЕМА (от греч. heterogenes — разнородный), неоднородная термодинамич. система, состоящая из различных но физ. св-вам или хим. составу частей фаз). Смежные фазы Г. с. отделены друг от друга физ. поверхностями раздела, на к-рых скачком изменяется одно или неск. св-в системы (состав, плотность, крист, структура, электрич. или магн. момент и т. д.). Примеры Г. с. вода и водяной пар над ней (вода в двух агрегатных состояниях), уголь и алмаз (две различные но крист, структуре фазы одного в-ва — углерода), сверхпроводящая и нормальная фазы сверхпроводника, несмешивающиеся жидкости (напр., вода и растит, масло), композиц. материалы (волокнистые и дисперсноуплотнённые, содержащие различные по структуре хим. в-ва в ТВ. состоянии). Различие между Г. с. и гомогенной (однородной) системой не всегда ясно выражено. Так, переходную область между гетерогенными механич. смесями (взвесями) и гомогенными (молекулярными) р-рами занимают т. и. коллоидные р-ры, в к-рых ч-цы растворённого в-ва столь малы, что к ним неприменимо понятие фазы.  [c.114]

Герц дал блестящую геометрическую интерпретацию принципа Гаусса для специального случая, когда действующие силы равны нулю. В этом случае 2 может быть интерпретировано как геодезическая кривизна пути изображающей точки, которая представляет положение механической системы в Зп-мерном евклидовом пространстве с прямоугольными координатами ушух,, Ж]у1, yWiZi. Эта точка в силу заданного принуждения должна оставаться внутри некоторого подпространства этого Зл-мерного пространства. Принцип 2 = min может быть теперь выражен как требование, чтобы для изображающей точки кривизна в каждой точке ее пути имела наименьшее значение, совместимое с заданным принуждением. Это означает, что путь изображающей точки стремится быть насколько возможно прямым. Отсюда принцип прямейшего пути Герца.  [c.891]


Смотреть страницы где упоминается термин Гаусса Герца принцип наименьшей кривизн : [c.338]    [c.246]    [c.68]    [c.134]    [c.264]   
Аналитическая динамика (1999) -- [ c.338 ]



ПОИСК



Гаусс

Гаусса-Герца

Гауссова

Герц (Гц)

Герца

Кривизна

Кривизна гауссова

Кривизна кривизна

Наименьшая кривизна

Принцип Гаусса

Принцип Герца

Принцип Герца наименьшей кривизны

Принцип наименьшей кривизны



© 2025 Mash-xxl.info Реклама на сайте