Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ПАРОВЫЕ Параметры

Рассмотрим термодинамическую систему, представленную схематически на рис. 5.1. По трубопроводу / рабочее тело с параметрами Т, pi, t) подается со скоростью С[ в тепломеханический агрегат 2 (двигатель, паровой котел, компрессор и т.д.). Здесь каждый килограмм рабочего тела в общем случае может получать от внешнего источника теплоту q и совершать техническую работу например, приводя в движение ротор турбины, а затем удаляется через выхлопной патрубок 3 со скоростью сг, имея параметры Гг, pi, vi.  [c.43]


Дросселирование является типичным неравновесным процессом, в результате которого энтропия рабочего тела возрастает без подвода теплоты. Как и всякий неравновесный процесс, дросселирование приводит к потере располагаемой работы. В этом легко убедиться на примере парового двигателя. Для получения с его помощью технической работы мы располагаем паром с параметрами pi и ti. Давление за двигателем равно рг (если пар выбрасывается в атмосферу, то р2 = 0,1 МПа).  [c.51]

Турбины паровые стационарные для привода турбогенераторов (ГОСТ 3618— 82) выпускаются мощностью от 2,5 до 1600 МВт на параметры свежего пара р = 3,4ч-23,5 МПа и / = 4354-565 °С.  [c.172]

В соответствии со схемой и циклом паровой холодильной машины (см. рис. 23.8) определяются параметры узловых точек по Г,5-диаграмме и таблицам насыщенных паров фреона-12 [4]  [c.219]

Кроме того, требуется разработать конструкцию дожимающего компрессора с приводной паровой турбиной конденсационного типа на средние параметры пара. Однако можно исключить дожимающий компрессор. Для этого на выходе из компрессора ГТ-125 устанавливаются дополнительно две ступени, позволяющие увеличить степень сжатия компрессора. Предварительные расчеты показывают, что в этом случае потребуется увеличение длины корпуса и ротора на 0,5 м.  [c.23]

Пример 14-1. Имеем 1 кг перегретого водяного пара с давлением Pi = 100 бар и /j = 530° С в первом случае при этих параметрах пар поступает в паровую турбину, где адиабатно расширяется до конечного давления рг = 0,05 бар. При этом за счет изменения внешней кинетической энергии пар совершает работу, численно равную изменению энтальпии.  [c.232]

При этом в случае парового пузырька нужно учитывать условие фазового равновесия или насыщения в исходном состоянии (параметры, соответствующие этому состоянию, снабжены индексом О внизу)  [c.295]

Таким образом, все многообразие решений о пульсациях парового пузырька определяется набором указанных девяти независимых параметров вместе с параметром у. Тот факт, что этих независимых параметров девять, показывает большое разнообразие возможных режимов и богатство этой, казалось бы, простой задачи. Для случая пузырька с инертным газом, когда отсутствуют фазовые переходы (сро = 0), решение определяется параметром 7 и первыми шестью параметрами (5.8Л0). Если учесть, что при не очень сильных возмуш ениях при отсутствии фазовых переходов внешняя задача (в жидкости) становится несуш ественной из-за  [c.299]


Рост парового пузырька при вынужденных колебаниях в акустическом поле. Только что рассматривались установившиеся пульсации пузырька, когда параметры совершают гармонические колебания  [c.307]

Учитывая медленное изменение параметров потока вдоль канала и значительную протяженность области испарения по сравнению с шириной канала 25, процесс теплообмена в канале считаем квазиодномерным. Рас-пределение температуры Т пористого материала поперек плоского канала и температуры t паровой фазы испаряющегося теплоносителя описывается дифференциальным уравнением  [c.118]

Переход на парожидкостный режим при докритических параметрах охладителя сопровождается повышением гидравлического сопротивления пористого материала вследствие увеличения объема паров охладителя. При этом пористая стенка начинает работать на устойчивом режиме парожидкостного охлаждения, но при увеличенном давлении охладителя. Температура же горячей стенки скачкообразно возрастает и в определенном диапазоне расходов охладителя остается постоянной (см. рис. 6.3). Постоянство температуры горячей стенки в некотором интервале расходов охладителя можно объяснить тем, что при истечении из пористой стенки парожидкостной смеси не вся жидкость участвует в ее охлаждении, часть жидкости в виде мельчайших капель по инерции проходит сквозь пограничный слой и уносится потоком горячего газа. По мере уменьшения расхода охладителя количество жидкости в парожидкостной смеси уменьшается, а граница раздела жидкость—пар перемещается внутрь стенки. Температура поверхности, соприкасающейся с горячим газом, остается постоянной, а температура стенки со стороны подачи охладителя возрастает и достигает температуры кипения. Этот момент характеризуется вторичным повышением гидравлического сопротивления пористого материала. Над пористой стенкой со стороны подачи охладителя образуется паровой слой. Система начинает работать на паровой режим охлаждения. При этом температура горячей поверхности стенки резко возрастает, что может привести к ее прогару. По мере повышения в газовом потоке давления область удельных расходов охладителя, где температура горячей стенки постоянна, сокращается и>за уменьшения скрытой теплоты парообразования (см. рис. 6.4).  [c.154]

Диаграмма is имеет много ценных свойств она позволяет быстро определять параметры пара с достаточной для технических расчетов. точностью, дает возможность определять энтальпию водяного пара и разности энтальпий в виде отрезков, чрезвычайно наглядно изображает адиабатный процесс, имеющий большое значение при изучении паровых двигателей, и, наконец, позволяет быстро, наглядно и достаточно точно решать различные практические задачи.  [c.187]

Паровая турбина мощностью N 12 000 кВт работает при начальных параметрах р = 8 МПа и П = — 450° С. Давление в конденсаторе ра = 0,004 МПа. В котельной установке, снабжающей турбину паром, сжигается уголь с теплотой сгорания Qн = 25 120 кДж/кг. К. п. д. котельной установки равен 0,8. Температура питательной воды /п, в = 90° С.  [c.244]

Параметры пара перед паровой турбиной pi = --9 МПа, 1 = 500°С. Давление в конденсаторе Ра = == 0,004 МПа.  [c.245]

Определить абсолютный внутренний к. п. д. паровой турбины, работающей при начальных параметрах Pi — 9 МПа и П == 480° С и конечном давлении р =  [c.245]

Определить экономию, которую дает применение паровых турбин с начальными параметрами р = 3,5 МПа, П = 435° С по сравнению с турбинами, имеющими начальные параметры Pi = 2,9 МПа и П = 400° С.  [c.245]

Паровая турбина мощностью N — 25 МВт работает при начальных параметрах pi = 3,5 МПа и О = = 400° С. Конечное давление пара = 0,004 МПа.  [c.246]

Остальные параметры парового потока, протекающего через сечение М-М, такие как плотность р,,и , удельная энтальпия удельная теплоемкость температура скорость компонентный состав остаются без изменений и равны величинам  [c.114]

Из ячейки, например п, в которой не произошло ни испарения, ни конденсации, выходит поток, имеющий массовый расход (4.2.61), удельную энтальпию / (4.2.72), удельную теплоемкость С (4.2.73), температуру (4.2.74), скорость 1У , (4.2.58), компонентный состав С, (4.2.71) и плотность р (4.1.1)-(4.1.44). Таким образом, используя системы уравнений (4.2.1 )-(4.2.27), (4.2.56)-(4.2.125) и (4.1.1)-(4.1.44) рассчитываются для каждой ]-а ячейки (здесь ] 1, 2,. .. к,. .. п,. .. /, q,. .., ш, а также паровой слой еп), заключенных между двумя произвольно взятыми сечениями Л/-1-Л/-1 и М-М находятся следующие параметры массовые расходы жидкой L J и Рому- фаз, их компонентные составы и плотности р,му и удельные  [c.116]


При (Эд/д- < о рассчитываются параметры парового слоя массовый расход  [c.122]

Если не во Е)сех ячейках рассматриваемого сечения произошло испарение, а в некоторых ячейках произошла конденсация, т.е. 2(м- )-м О (4,2.92) и при условии того, что количество газовой фазы из парового слоя достаточно для заполнения пространства в ячейках от сконденсировавшегося газа, т,е. А зг О (4.2,93), то рассчитывается объемный расход оставшейся газовой фазы в паровом слое (4.2.94) и ее массовый расход (4.2.95). Рассчитывается также площадь поперечного сечения (4.2.96), занимаемая паровым слоем после того, как из него газовая фаза заполнила пространство в ячейках, в которых произошла конденсация. Остальные параметры парового потока такие, как плотность удельная энтальпия  [c.124]

Рассчитанные для этого случая параметры парового слоя являются результирующими.  [c.124]

В паровом котле 1 за счет теплоты сгорающего в топке топлива происходит процесс парообразования пар необходимых параметров получается в пароперегревателе 2.  [c.175]

Приняв в качестве параметра X относительное массовое содержание паровой фазы в равновесной смеси жидкости и насыщенного пара  [c.267]

Параметры влажного пара. Относительное содержание паровой фазы в двухфазной системе, состоящей из насыщенного пара и находящейся с ним в равновесии жидкости (равновесную смесь насыщенного пара с жидкостью называют также влажным паром ), обозначается, как уже отмечалось ранее, через X и называется степенью сухости влажного пара  [c.271]

Прямые расчеты для многих режимов роста паровых пузырей в различных жидкостях при Ja > 500 показывают, что безразмерный параметр G слабо изменяется за время роста. Это означает, что формула (6.37) предсказывает промежуточный закон изменения радиуса пузыря во времени R в сравнении с R t для инерционной  [c.261]

Действующие при пузырьковом кипении центры парообразования — это очень малые сухие пятна на обогреваемой твердой поверхности. Характерный размер этих пятен примерно равен радиусу жизнеспособного парового зародыша / , определяемого при малых АТ формулой (8.3). Плотность центров парообразования (п ), т.е. число сухих пятен на единицу площади поверхности нагрева, — это важнейший параметр для теплообмена при кипении. В отсутствие строгой теории зарождения паровых пузырьков на стенке, исходя из соображений размерности и общих физических представлений, можно принять  [c.348]

Развитие конструкций котлов. Исто рическн развитие паровых котлов шло в направлении повышения паропроизво-дительности, параметров производимого пара (давления и температуры), надежности и безопасности в эксплуатации, увеличения экономичности (КПД) и снижения массы металлоконструкций, приходящейся на 1 т вырабатываемого пара.  [c.146]

Принципиальная тепловая схема ПГУ с ВПГ с псев-д оожиженным слоем представлена на рис. 1.10. Она включает следующее основное оборудование одну паровую турбину на докритические параметры пара типа К-800-130, два газотурбинных агрегата типа ГТ-125-950-  [c.22]

В период 1961—1965 гг. осуществилось дальнейшее повышение параметров пара было построено большое количество котлоагрега-тов на давление 240 am и температуру 565—580° С. Такие турбины на 20%экономичнее паровых турбин на давление 90 am и 500°С.  [c.6]

При наличии парового участка величина зависит от параметров к, ДГэ/]Уз, Аз, Вг. Причем при фиксированных параметрах к, AT3IN3, Аз эффективность максимальна, если температура внешней поверхности равна предельной, что достигается за счет увеличения параметра Вз до некоторого максимального значения Bf. Изменение 5 3 при прочих постоянных условиях может быть произведено, например, надлежащим выбором коэффициента теплопроводности X пористого материала. Величина Bf при фиксированных параметрах к, AT3IN3, A3 определяется в результате численного решения характеристического уравнения  [c.141]

Влияние отдельных параметров на изменение величины ip показано на рис. 6.9. Эти результаты рассчитаны при тех же условиях, что и данные, приведенные на рис. 6Я. Эффективность использования охладителя возрастает при углублении начала парового участка (уменьшении к), при увеличении разности температур между проницаемой матрицей и охладителем в начале парового участка и при увеличении интенсивности внутрипорового конвективного теплообмена. Очевидно, что при равных прочих условиях процесс испарительного охлаждения следует организовать так, чтобы использовать под паровой участок как можно большую часть пористой стенки.  [c.142]

Примерно в течение 20 с основная доля подаваемой жидкости поступает на заполнение объема сжимаемого воздушного пузырька. Расход охладителя через образец резко падает, температура возрастает во всех его точках, в том числе и на внутрашей поверхности, где она значительно превышает температуру насыщения е°. Охладитель закипает до входа в образец с образованием паровой прослойки. При этом на расстоянии 3 мм до входа температура его выше Г - пар перегрет даже здесь. Важно отметить, что в этот момент резко возрастает и давление перед стенкой в результате испарения жидкости до входа в нее. После сжатия воздушного пузырька весь подаваемый в стенд охладитель поступает к образцу и постепенно вдавливает в него паровую прослойку. Примерно через 12 мин все параметры системы возвращаются в исходное состояние и больше колебаний не наблюдается. После этого отрезок линии со сжатым воздушным пузырьком отключается от стенда.  [c.151]

На заводской теплоэлектроцентрали установлены две паровые турбинв с противодавлением мощностью 4000 кВт каждая. Весь пар из турбины направляется на производство, откуда он возвращается обратно в котельную в виде конденсата при температуре насыщения. Турбины работают с полной нагрузкой при следующих параметрах пара р] = 3,5 МПа, = 435° С = = 0,12 МПа.  [c.250]

Параметры пара в образующемся паровом объеме критических раз-мероь соответствуют параметрам насыщения и не зависят от кривизны аоверхности раздела 1 идкость - дар /о,а,9/  [c.82]


Кроме этого, определяются следующие параметры парового слоя, образующегося при испарении среды в ячейке и протекающего через сечение 1-1 массовый расход Ез , компонентный состав С > , удельную энтальпию/ 1, удельнунз теплоемкость С у , температуру, скорость W , , плотность р ], число Пуассона.  [c.107]

Иыс. 4.10. Ьлок схема расчета параметров многокомпонентного парового слоя (с индексом ег) и среды (с индексом с), поступающей в ячейки на месч сконденсировавшегося 1ача  [c.123]

Если в паровом слое произошла конденсация, и в паровом слое не хватило среды для заполнения пространства от сконденсировавшейся газовой фазы, т.е. величина А из (4.2.93) меньше нуля, то рассчитываются параметры смеси, которая состоит из газовой фазы парового слоя и низконапорной среды из окружающего сггрую пространства. Определяется объемный расход м из (4.2.97) низконапорной среды, ее массовый расход из (4.2.98). Далее находятся параметры смеси ее массовый расход Есм " (4.2.98), скорость - (4.2.105), удельная энтальпия 4м - (4.2.100), удельная теплоемкость Qm - (4.2.101), температура Г м - (4.2.102), компонентный состав С -м -(4.2.103) и плотность р м - (4.2.104).  [c.125]

Блок-схема определения параметров потока парового слоя (с индексом еи) а среды (с индексом см), поступающей в ячейки на место сконденсировавшейся газовой фазы, представлена на рис. 4.10. Если в некоторых ячейках "п" не произошло ни конденсации, ни испарения, т.е. = 0 - (4.2.81), то параметры вьеходящих из таких ячеек потоков, определенные из уравнений (4.2.61) - F n> (4.2.57), (4.2.58), (4.2.61) - W , (4.2.71) или (4.2.75) - С, л- (4.2.74) или (4.2.79) - Т , остаются без изменений и являются результирующими. Если в ячейках "Г произошла конденсация и количество среды из парового слоя оказалось недостаточно для заполнения пространства от сконденсировавшегося газа, т.е. Д < 0 - (4.2.93), то параметры потоков, выходящих из ячеек, рассчитываются следующим образом. Определяются коэффициент (р из выражения (4.2.107), массовый расход среды, заполняющей пространство от сконденсировавшегося газа в данной ячейке Арм/ - (4.2.106), массовый расход потока, выходящего из ячейки (4.2.108), плотность потока р - (4.2.109), скорость И , - (4.2.110), удельная энтальпия / /- (4.2.111), удельная теплоемкость С /- (4.2.112), температура Tul (4-2.113), общий компонентный состав M - (4.2.114). Если в ячейках I произошла конденсация и количество среды из парового слоя оказалось достаточно для заполнения пространства от сконденсировавшегося газа, т.е. А 0 (4.2.93), то параметры потоков, выходящих из ячеек рассчитываются следующим образом массовый расход среды, поступаюЕцей из парового слоя АЕм/ - (4.2.115), массовый расход потока, истекающего из ячейки - (4.2.116), плотность p i - (4.2.117), скорость -(4.2.118), удельная теплоемкость - (4.2.120), удельная энтальпия - (4.2.119), обгций компонентный состав С i - (4,2.121), температура T i - (4.2.122). Если в ячейках "q" произошло испарение, то после выделения в паровой слой части газовой фазы, параметры потоков, выходящих из этих ячеек, рассчитываются из уравнений (4.2.123) - массовый расход (4.2.124) - плотность р , (4.2.125) - общий компонентный состав, остальные параметры потоков, такие как, удельная энта.пьпия l q, удельная теплоемкость С (, температура находятся из системы уравнений (4.1.2>-(4.1.40) (см. блок-схему рис. 4.2.1), скорость Wиз системы уравнений (4.2.57), (4.2.58), (4.2.61).  [c.125]

Если давление насыщенных паров Р в кавитационных пузырьках меньше давления P низконапорной среды, то под действием разности этих давлений происходит схлопывание - коллапс пузырьков и каверн кавитационной области. Под действием давления Р,. низконапорная среда занимает объем этих кавитационных пузырьков и каверн. Низконапорная среда, проникая из окружающего пространства в потенциальное ядро струи, состояпще из высоконапорной кавитирующей жидкости, образует вместе с последней турбулентный пограничный слой струйного течения. Таким образом, данное струйное течение состоит из потенциального ядра кавитирующей жидкости и турбулентного пограничного слоя, содержащего смесь низконапорной и высоконапорной сред. После полного замещения низконапорной средой паровой фазы в пузырьках и кавернах кавитационного потенциального ядра струйное течение, начиная от сечения 0-0 (см. рис. 5.1, б), приобретает структуру свободной турбулентной струи, параметры которой за сечением 0-0 рассчитываются по методу в гл. 4, а процесс эжекции низконапорной среды кавиз ирующей жидкость описывается следуюпщй системой уравнений, в которую входят уравнения  [c.148]

Параметры критической точки, т. е. значения критического давления критической температуры и критического объема находятся из опыта. Критическую температуру находят по температуре исчезновения лгениска между жидкой и паровой фазой, а критическое давление — по величине давления в этот момент. Точное определение критического объема представляет собой достаточно сложную задачу.  [c.259]

Размер пузырька в момент отрыва от твердой поверхности — важный параметр для понимания механизма кипения. На сегодня накоплена обширная опытная информация о предотрывных диаметрах паровых пузырьков при кипении различных жидкостей. (Часть этой информации получена в тех экспериментальных исследованиях динамики паровых пузырьков, результаты которых отражены на рис. 6.12.) Но, несмотря на это, а также на кажущуюся простоту объекта исследования (индивидуальный паровой пузырек, растущий на твердой обогреваемой стенке), в теоретическом плане проблема отрыва пузырька весьма сложна и, к сожалению, изрядно запутана.  [c.271]

Для паросиловых установок большое значение имеет факт уменьшения работоспособности пара в результате дросселирова- шя. Это свойство положено в основу качественного метода регулирования мощности паровых турбин. Действительно, если пар подходит к турбине с параметрами / i, (точка /), то при адиабатном расширепин до иеко юрого конечного давления Pi ,, (процесс I—3) располагаемая работа составит — (. . Если несколько прикрыть вентиль на трубопроводе подачи пара к турбине, то в нем произойдет дросселирование (процесс /—2) и в тур-  [c.26]


Смотреть страницы где упоминается термин ПАРОВЫЕ Параметры : [c.18]    [c.293]    [c.88]    [c.117]    [c.118]    [c.215]    [c.123]    [c.573]   
Машиностроение Энциклопедический справочник Раздел 4 Том 13 (1949) -- [ c.304 ]



ПОИСК



Классификация паровых котлов, параметры и маркировка

НАСОСЫ паровые прямодействующие горизонтальные двухцилиндровые двойного действия- Параметры

Параметры Мультипликаторы паровые - Сервопривод

Параметры и рабочий процесс паровой машины дои,., канд. техн наук И. Ф. Суровцев)

Параметры одностоечные с одним паровым возвратным цилиндром

Параметры паровых турбин

Параметры, производительность, типы и условные обозначения стационарных паровых котлов по ГОСТ

Паровые котлы параметры

Паровые турбины конденсационные - Параметры

Расчет на ЭВМ параметров установок, предназначенных для сведения паровых балансов промышленных предприятий

Термодинамические параметры состояния водяного пара. Паровые процессы



© 2025 Mash-xxl.info Реклама на сайте