Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аргон Точка кипения

Для прецизионной термометрии наибольший интерес представляют низкотемпературные точки кипения или тройные точки таких газов, как гелий, водород, неон, кислород, аргон и метан. Основные принципы реализации любой из этих точек являются общими для всех. Они будут изложены в процессе описания аппаратуры и методики работы с ней при реализации тройной точки и точки кипения водорода. При этом будут отмечены специфические особенности работы с другими газами. Измерение давления паров Не и Не занимает особое место, поскольку обеспечивает воспроизведение принятых международных температурных шкал. Эти шкалы и их реализация обсуждались в гл. 2.  [c.152]


Точно реализовать точку кипения кислорода несколько сложнее. Выше отмечалось, что чувствительность по давлению в ней составляет треть от чувствительности в неоновой точке, и поэтому возникает необходимость точного введения гидростатической поправки. Примеси в кислороде также более вероятны и трудноотделимы. Надежные измерения чистоты кислорода осуществить трудно, потому что в нем, например, сразу сгорает катод масс-спектрометра [24]. Тем не менее было проведено подробное изучение влияния примесей на точку кипения и тройную точку кислорода [2, 25, 38]. Оказалось, что примеси СОг и НгО не влияют на результаты измерений, поскольку они конденсируются далеко от камеры с образцом, и что Не и Ме нерастворимы в жидком кислороде и потому легко откачиваются. Наиболее важными примесями являются азот (что и следовало ожидать) и СО. Влияние этих примесей, а также аргона и криптона на точку кипения кислорода показано в табл. 4.4.  [c.161]

В последние годы было проведено много работ по реализации тройных точек неона [5, 36], кислорода [2, 25, 38, 62], азота [36], аргона [3, 36, 62], метана [13], криптона [36] и. ксенона [6]. В настоящее время стала общепринятой точка зрения о преимуществе тройных точек перед точками кипения в качестве реперных. Для этого имеются две причины во-первых, отпадает необходимость в измерении давления, и, во-вторых, недавно разработаны очень удачные герметичные ячейки с тройными точками. Прежде чем перейти к вопросу о герметичных ячейках, рассмотрим методы, используемые при реализации тройных точек, указанных газов в классическом криостате для тройных точек, показанном на рис. 4.15.  [c.162]

Константы Ьа и определяют из значений AW(Tea), измеренных в точке кипения кислорода (илп тройной точке аргона) и точке кипения воды.  [c.173]

Жидкий аргон Плотность (уж) в точке кипения, кг/м . . 1270,6  [c.11]

Пятихлористый рений (точка кипения 330° С) получают действием хлора на металлический рений при 500—600° С. Термическую диссоциацию ведут в сосуде из тугоплавкого стекла, где расположена нагреваемая током вольфрамовая или рениевая нить. Диссоциацию осуществляют либо в вакууме (с откачкой образующегося хлора), либо в атмосфере защитного газа (азот, аргон), служащего носителем паров пятихлористого рения. Поверхность нити нагревают до 1200—1300° С.  [c.481]

Сравнительно тяжелые бомбардирующие ядра, такие, как С, Ne, Аг, имеющие даже не очень высокие энергии, позволяют достичь энергий возбуждения в несколько сотен мегаэлектронвольт, что эквивалентно ядерным температурам в несколько мегаэлектронвольт (1 кэВ соответствует температуре, равной 1,16-10 К). Даже в случае намного больших энергий, например при рассеянии ядер углерода с энергией 720 МэВ и ядер аргона с энергией 1,1 ГэВ, энергия, передаваемая от бомбардирующей частицы к ядру мишени, невелика, но достаточна для достижения температуры закипания ядерной жидкости порядка 5—6 МэВ, что приводит к последующему испарению нуклонов из ядра мишени. Это явление полностью аналогично процессу испарения капли жидкости, нагретой до температуры, близкой к точке кипения.  [c.247]


До настоящего времени нет единой точки зрения на причину возрастания коэффициента теплоотдачи при уменьшении толщины пленки. Отсутствуют также обобщенные зависимости для расчета коэффициента теплоотдачи в тонких пленках в условиях, когда нет принудительного движения жидкости. В работе 32] авторы рекомендуют формулы для расчета интенсивности теплообмена при кипении криогенных жидкостей в тонких пленках. Однако каждая из трех рекомендованных формул обобщает опытные данные, относящиеся только к данной группе жидкостей 1 — для расчета а при кипении азота, кислорода, аргона 2 — для расчета а при кипении  [c.197]

До недавнего времени было принято считать, что для МПТШ обязательно, чтобы температуры в данном интервале воспроизводились только одним методом. Выполнение этого требования автоматически обеспечивает единство измерений температуры. Однако редакция МПТШ-68 1975 г. допускает при градуировке платиновых термометров сопротивления использовать с равным правом тройную точку аргона пли точку кипения кислорода. В настоящее время нет никаких указаний на то, что такая двойственность привела к заметным расхождениям результатов измерений. Опыт успешной эксплуатации ПТШ-76, где с равным правом допускается воспроизводить шкалу несколькими весьма различными, но хорошо исследованными методами, также позволяет считать указанные выше формальные требования неоправданно жесткими. Можно полагать поэтому, что разумное отступление от метрологического пуризма и применение на равных основаниях обоих указанных выше методов воспроизведения МПТШ от 13,81 до 24 К не сможет привести к экспериментально ощутимым потерям в единстве измерений температуры.  [c.8]

В гл. 2 излагалось, каким образом на основе ряда реперных точек и определенных методов интерполяции между ними возникла Международная практическая температурная шкала (МПТШ). Реперными точками первой МПТШ являлись точки кипения кислорода, воды и серы, точки затвердевания воды, серебра и золота. В современной редакции шкалы добавлены точки кипения водорода и неона, тройные точки водорода, неона, аргона, кислорода и воды, точки затвердевания олова и цинка в свою очередь точка кипения серы исключена. В последние годы тройные точки и точки затвердевания считаются более предпочтительными по сравнению с точками кипения по простой причине они могут быть реализованы без необходимости измерять давление. Продолжающийся рост требований к увеличению точности реализации точек кипения приводит к необходимости более точных измерений давления, что сопряжено с очень большими трудностями. Например, для реализации точки кипения воды с воспроизводимостью по температуре 0,1 мК необходимо измерение давления с погрешностью 0,3 Па в свою очередь в точке кипения серы изменения давления 0,3 Па приводят к изменениям температуры на 0,2 мК- Необходимость в расширении МПТШ ниже 13,81 К, т. е. в область, где тройных точек не существует, привело к разработке реперных точек, основанных на фазовых переходах в твердом теле. Наиболее важным шагом в этом направлении явилось принятие в качестве реперных точек нижней части ПШТ-76 температур сверхпроводящих. переходов.  [c.138]

Герметичные ячейки, подробно здесь рассмотренные, приспособлены для градуировки термометров капсульного типа. Для градуировки стержневых термометров в тройной точке аргона, являющейся в настоящее время альтернативной точке кипения кислорода, создана эквивалентная герметичная ячейка [14]. На рис. 4.21 показана такая ячейка вместе с устройством для охлаждения и реализации тройной точки аргона. Пр и комнатной температуре давление аргона в ячейке составляет около 56 атм. Она заполнена аргоном таким образом, чтобы в тройной точке нижняя чаеть ячейки была заполнена твердым или жидким веществом. В процессе работы ячейка первоначально погружается в жидкий азот так, чтобы аргон замерзал в ее нижней части. Когда это происходит, ячейка полностью заливается азотом. Затем сосуд с азотом герметизируется и в нем устанавливается давление, соответствующее температуре тройной точки аргона (83, 798 К). Для этой цели в верхней части сосуда имеется клапан. При такой процедуре давление азота возрастает от 101 325 Па при 77,344 К до 130 кПа при 83,798 К. Этим методом можно реализовать тройную точку аргона, используя для наблюдения за ней стержневой платиновый термометр. Для уменьщения влияния неоднородности температуры ванны жидкого азота ячейка покрывается слоем пенопласта. Точность реализации тройной точки аргона описанным методом не столь высока, как в ячейках для капсульных термометров, из-за недостаточной однородности температурного поля ванны. Тем не менее она находится в пределах 1 мК, и поэтому ячейка типа показанной на рис. 4.21 представляется хорошим конкурентом аппаратуре для реализации точки кипения. кислорода.  [c.166]


Входящие сюда константы определяются из измерений при температуре кипения кислорода и температуре кипения воды (или же при температурах затвердевания олова и цинка). В МПТШ-68 редакции 1975 г. разрещается вместо температуры кипения кислорода использовать тройную точку аргона при условии, что в точке кипения кислорода обеспечивается плавность поправочной функции.  [c.206]

Константы /4з, Вз и Сз определяют из значений ДЧ С бб), измеренных в тройной точке и точке кипения кислорода (или тройной точке аргона), а также из значения d(AW)dTss в точке кипения кислорода (тройной точке аргона), вычисленной по уравнению (8.5),  [c.173]

Метод химического осаждения из газовой или паровой фазы. Это химический процесс, в результате которого алюминий осаждается из разложившихся соединений алюминия. Алкил газ (такой, как диэтил-гидрид алюминия, точка кипения 55— 56° С) вводят в рабочую камеру после очистки в смеси с инертиым газом, таким как аргон или азот. После разрушения гидрида при нагревании (180° С) алюминий осаждается на подложку. Толщина слоя от 0,075 до 2,5 мм для различных материалов. Покрытие, полученное этим способом, эластичное, блестящее, с хорошей адгезией.  [c.402]

Более обширные исследования вязкости компонентов воздуха в жидком состоянии выполнили Н. С. Руденко и Л. В. Шубников [154]. Ими получены значения коэффициентов вязкости жидких азота, кислорода и аргона, а также окиси углерода в интервале температур от нормальной точки кипения до тройной точки. Был применен метод Пуазейля, позволяющий получить абсолютные значения вязкости и не требующий знания других свойств вещества (за исключением плотности). Вискозиметр системы Убеллоде находился в цилиндрическом сосуде Дьюара, закрытом герметичной крышкой необходимая температура достигалась откачкой паров охлаждающих жидкостей (технических азота и кислорода). Для облегчения регулирования температуры сосуд с вискозиметром был погружен во второй сосуд Дьюара, заполненный жидким воздухом. Для измерения температуры использован кислородный конденсационный термометр, помещенный вблизи вискозиметра.  [c.172]

ПЕРЕБРОСА ПРОЦЕССЫ, процессы состояние столкновения гсвазичастиг в кристалле, (см. Удары второго рода). Появление при к-рых их суммарный квазиим-такой дополнит, ионизации приводит пульс изменяется на величину 2лШ, к снижению эфф. потенциала иониза- где Ь — вектор обратной решётки. ции среды и, следовательно, к сниже- П, п,— результат периодичности нию напряжения зажигания раз- расположения атомов в кристалле, ряда и. На рис. представлена зависи- ПЕРЕГРЕВ, 1) нагрев жидкости выше мость и (в логарифмич. масштабе) её точки кипения (при данном давле-от произведения давления газа р на нии) или нагрев твёрдого крист, расстояние й между электродами в в-ва выше темп-ры его фазового пере-чистом неоне (1), чистом аргоне (2), хода из одной модификации в другую неоне с примесью 5-10 % аргона (3) (напр., ромбич. серы в моноклинную), и неоне с примесью 0,1% аргона (4), Перегретое в-во находится в неустой-  [c.524]

При определенных обстоятельствах для управления процессом плавки иногда необходимо повышать остаточное давление в вакуумной печи до 20 - 50 мм рт.ст., для чего в печь вводят аргон или ге [ий, например, при плавке титановых сплавов (рис. 120, точка Е). Повышение давления позволяет ослабить кипение металла в тигле, вызывающее образование труднорасплавляемого кольца на воротнике тигля оно необходимо во время разливки для получения плотного слитка или отливки.  [c.250]

На рис. 7.16 формула (7.2) сопоставлена с опытными данными, полученными при кипении азота п кислорода, а на рис. 7.17 — при кипении водорода, неона, аргона и гелия. Из рисунков видно, что основные представленные здесь опытные данные, полученные при кипении жидкостей на разных поверхностях нагрева (трубы, проволочки, пластины, торцы стержней), изготовленных из различных материалов (меди, латуни, бронзы, никеля, нержавеющей стали, платины), располагаются около расчетной кривой (7.2) с разбросом 35%. Если учесть, что при кипении криогенных жидкостей температурные напоры исчисляются градусами и даже десятыми долями градуса, то такой разброс не является чрезмерно большим . Опытные данные, в которых температурные напоры исчислялись сотыми долями градуса (например, данные авторов [32], полученные при кипении гелия на торце медного стержня), на график не наносились, так как в этих опытах ошибки при определении температурных напоров н соо 1 ветственно коэффициентов теплоотдачи могут быть весьма велики.  [c.208]

Рис. 7.8.5. Влияние вязкости жидкости на параметр й , определяющий кризис (оттеснение жидкости) при барботаже и кипении. Незачерненные точки 1—7 соответствуют барботажу при р = 0,1—4,1 МПа, Т = 280 К, из них точки 1—5 соответствуют воде и водоглицериновым растворам разной вязкости, барботируемым разными газами 1 — водородом, 2 — гелием, 3 — азотом, 4 — аргоном, 5 — ксеноном точки 6, 7 соответствуют этанолу, барботи-руемому азотом (б) и аргоном (7). Зачерненные точки 8—16 соответствуют кипению разных жидкостей при разных давлениях р (МПа), из них точки 8—12 — для кипения воды (8 — при 0,02 МПа, 9 — при 0,1 МПа, 10 — при 4,5 МПа, 11 — при 5,4 МПа, 12 — при 18,6 МПа), точки 13, 14 — для кипения этанола (13 при 0,1 МПа, 14 при 1,0 МПа) 5—для кипения бензола при 0,1 МПа, 16 — для кипения метанола при 0,1 МПа. Точки 1—16 — экспериментальные данные С. С. Кутателадзе, И. Г. Маленкова (1976) и И. Г. Маленкова (1978). Точки 17—20 соответствуют кипению натрия, калия, цезия, рубидия, для которых скорость IV рассчитывалась по полному тепловому потоку (данные В. И. Субботина и др., 1968, 1969) Рис. 7.8.5. <a href="/info/582373">Влияние вязкости жидкости</a> на параметр й , определяющий кризис (оттеснение жидкости) при барботаже и кипении. Незачерненные точки 1—7 соответствуют барботажу при р = 0,1—4,1 МПа, Т = 280 К, из них точки 1—5 соответствуют воде и водоглицериновым растворам разной вязкости, барботируемым разными газами 1 — водородом, 2 — гелием, 3 — азотом, 4 — аргоном, 5 — ксеноном точки 6, 7 соответствуют этанолу, барботи-руемому азотом (б) и аргоном (7). Зачерненные точки 8—16 соответствуют кипению разных жидкостей при разных давлениях р (МПа), из них точки 8—12 — для кипения воды (8 — при 0,02 МПа, 9 — при 0,1 МПа, 10 — при 4,5 МПа, 11 — при 5,4 МПа, 12 — при 18,6 МПа), точки 13, 14 — для кипения этанола (13 при 0,1 МПа, 14 при 1,0 МПа) 5—для кипения бензола при 0,1 МПа, 16 — для кипения метанола при 0,1 МПа. Точки 1—16 — экспериментальные данные С. С. Кутателадзе, И. Г. Маленкова (1976) и И. Г. Маленкова (1978). Точки 17—20 соответствуют кипению натрия, калия, цезия, рубидия, для которых скорость IV рассчитывалась по полному тепловому потоку (данные В. И. Субботина и др., 1968, 1969)

С, жидкий кислород при —182,96° С, жидкий аргон при —185,7° С. Таким образом, между температурами кипения, например, азота и кислорода существует разница в 13°. Поэтому, если воздух сначала перевести в жидкое состояние, а затем начать его постепенно испарять, то первым будет испа )яться азот, обладающий более низкой температурой кипения То мере испарения и улетучивания азота из жидкости она будет все более обогащаться кислородом. Повторяя этот процесс многократно (такой процесс разделения смесей называется ректификацией), можно добиться желаемой степени разделе ния воздуха на азот и кислород, получая требуемую чистоту каждого газа. При получении чистого кислорода аргон остается в отходящем азоте. Этот способ позволяет получать кислород практически в любых количествах, затрачивая при этом энергии от 0,45 до 1,6 квт-ч на 1 кислорода в зависимости от размеров и технологической схемы воздухоразделительной установки [1. 2] [1. 3].  [c.11]


Смотреть страницы где упоминается термин Аргон Точка кипения : [c.35]    [c.743]    [c.54]    [c.26]    [c.175]    [c.263]    [c.87]    [c.87]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.456 ]



ПОИСК



Аргон

Кипение

Кипения точка



© 2025 Mash-xxl.info Реклама на сайте