Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аберрации поверхностями

Для оптического прибора выходные параметры — сферическая аберрация, кома, астигматизм, хроматизм положения, фокусное расстояние системы внутренние параметры — радиусы поверхностей линз и расстояния между ними  [c.22]

Наиболее ясно возникновение сферической аберрации, при которой (так же, как в случае астигматизма) в результате прохождения света через реальную оптическую систему возникает отклонение волновой поверхности от сферической Пучок света перестает быть гомоцентрическим, и излучение не фокусируется в одной точке, с позиций геометрической оптики возникновение  [c.330]


Аберрация комы (см. 82) означает, что каустическая поверхность обладает лишь одной плоскостью симметрии, проходящей через светящуюся точку и оптическую ось.  [c.303]

Величина сферической аберрации зависит от кривизны поверхностей линзы и показателя преломления, а также от того, какой из поверхностей несимметричная линза обращена к источнику.  [c.304]

Для исправления сферической аберрации зеркал (например, прожекторов) им обычно придают не сферическую форму, а вид параболоида вращения, располагая источник в фокусе в таких зеркалах при тщательном их выполнении сферическую аберрацию можно сделать очень малой. Хорошо исправленными могут быть отражатели, обе поверхности которых сферические, но разной кривизны задняя, посеребренная, имеет меньшую кривизну. Отраженный свет испытывает дополнительное преломление в стекле отражателя, который играет роль рассеивающей линзы (тоньше в середине), рассчитанной так, чтобы исправить аберрацию задней поверхности. Такие зеркала употребляются в настоящее время только в небольших сигнальных аппаратах (диаметром не свыше 100 мм).  [c.305]

Весьма удачным решением задачи получения превосходных в оптическом отношении и сравнительно недорогих систем являются смешанные системы, где зеркальная оптика сочетается с линзовой, приводя к весьма полному устранению ряда вредных аберраций. Наиболее совершенной системой этого рода являются менисковые системы Д. Д. Максутова (рис. 14.19), где отражательное сферическое зеркало В сочетается с мениском М (см. 77), также ограниченным сферическими поверхностями. Применяя соответственно рассчитанный мениск так, чтобы его аберрации компенсировали аберрации зеркала, удается получить систему, главные аберрации которой во много раз меньше соответствующих аберраций линзовой системы того же относительного отверстия. Так, по данным Д. Д. Максутова, при относительном отверстии 1 5 у менисковой системы сферическая аберрация меньше в 11 раз, кома — в 11 раз, сферохроматическая аберрация — в 124 раза, вторичный спектр — в 640 раз и хроматизм увеличения — в 3,8 раза, чем у эквивалентного линзового объектива. Эти огромные преимущества в соединении с относительной простотой расчета и изготовления (сферические поверхности ) делают менисковые системы замечательным дости-  [c.335]

Попытки истолковать аберрацию света в рамках представления об увлекаемом эфире привели к выводу, что плотность эфира у поверхности Земли должна быть в раз больше, чем вдали от нее, хотя скорость света остается неизменной.  [c.446]


Астигматизм — одна из аберраций оптических систем. Проявляется в том, что сферическая волновая поверхность при прохождении через оптические системы может деформироваться и тогда изображение  [c.196]

Для того чтобы инструментальный контур спектральной линии имел наименьшую (характерную для данного прибора) ширину, а практическая разрешающая способность была наибольшей,, спектрограф должен быть тщательно сфокусирован. Фокусировка состоит из нескольких операций, в результате выполнения которых отдельные оптические элементы спектрографа должны располагаться так, чтобы аберрации были минимальными, а светочувствительный слой фотопластинки оказался совмещенным с фокаль -ной поверхностью.  [c.26]

Принцип работы призменного спектрографа описан в задаче 1. Роль коллиматорного объектива в спектрографе ИСП-22 выполняет вогнутое зеркало с алюминированной поверхностью. Его фокусное расстояние /1 = 600 мм, диаметр — 40 мм. Так как сфе-у)ическое зеркало не обладает хроматической аберрацией, лучи  [c.32]

Заслуживает внимания еще один аспект оптико-механической аналогии. В заданной области пространства могут распространяться световые колебания различных частот. Может случиться так, что коэффициент преломления п зависит от частоты. Это явление называется дисперсией . При наличии дисперсии первоначальный волновой фронт оптических приборах это явление называется хроматической аберрацией . Явлению дисперсии в оптике тоже может быть предложена соответствующая механическая аналогия. Механические траектории, начинающиеся перпендикулярно базисной поверхности S = О, могут несколько различаться по своей полной энергии Е. Это происходит, например, в электронном микроскопе, где тепловое движение электронов вызывает небольшой разброс значений их полной начальной энергии Е. Это приводит к дисперсии и к небольшой хроматической аберрации в картине, получаемой с помощью электронного микроскопа.  [c.312]

Электронный микроскоп. В электронном микроскопе лучи света заменены потоком электронов, поэтому разрешающая сила его и предельное увеличение ограничиваются не длиной волны, а аберрациями геометрической оптики. Предельные увеличения электронного микроскопа могут достигать сотен тысяч крат. Другими преимуществами электронного микроскопа являются большая глубина резкости (вследствие малых угловых апертур), позволяющая получать стереоснимки и исследовать рельеф поверхности, а также возможность исследовать процессы при повышенных температурах. На фиг. 17 изображён электронный микроскоп с увеличением до 25 000 крат.  [c.148]

Пусть для какой-нибудь точки 5 (рис. 13.9), лежащей на оптической оси, устранена с< )ерическая аберрация, так что 5 отображается в 5 резко, несмотря на применение широких пучков. Отсюда еще не следует, что небольшой участок поверхности а, проходящий через 5 и перпендикулярный к оси, будет изображаться резко и без искажений. Для такого правильного изображения необходимо, чтобы различные зоны системы давали одно и то же увеличение. В противном случае точки участка, не лежащие на оси, будут изображаться различными частями нашего широкого пучка на различных расстояниях от оси, т. е. для этих внеосевых точек нашего элемента не будет сохраняться стигматичность изображения. Аббе нашел, что требование постоянства увеличения различными зонами системы выполняется, если удовлетворено следующее условие  [c.310]

Здоровый глаз в общем можно рассматривать как центрированную систему поверхностей вращения. Строго говоря, это не очень совершенная система, ибо в ней ясно выражены и с( )ерическая аберрация, и астигматизм наклонных пучков, и значительная хроматическая аберрация. Однако все эти недоетатки очень мало чувствуются благодаря ряду особенностей глаза. Так, с( )ерическая аберрация не очень заметна, потому что распределение освещенности в пятнах рассеяния неравномерно, а самая светлая и самая важная для зрительного ощущения часть пятна очень мала при  [c.326]

НОМ (1672 г.), обратившимся к зеркалам в предположении, что линзовые объективы неизбежно страдают хроматической аберрацией. Известно, что заключение Ньютона было ошибочно (см. 86), и построение ахроматических объективов возможно. В настоящее время имеются первоклассные рефракторы, однако технически легче изготовить зеркало большого диаметра, чем однородный стеклянный диск, пригодный для изготовления большого линзового объектива. Поэтому, хотя требования к точности изготовления отражающей поверхности примерно в четыре раза выше, чем для преломляющей, изготовление очень больших зеркальных объективов оказалось более легкой задачей. Так, в настоящее время существует рефлектор с диаметром зеркала около 5 м (обсерватория Маунт-Паломар) и вступает в строй рефлектор диаметром 6 м (СССР), тогда как диаметр объектива наибольшего из существующих рефракторов достигает всего 1 м.  [c.334]


Минимально обнаруживаемый дефект достигает порядка 0,1 мм в диаметре. Применение металлического вращающегося зеркала увеличивает скорость сканирования в 4 раза по сравнению со стеклянным зеркалом. Возможно контролирование поверхности ма 1ериала, двигающегося со скоростью свы1не 15 м/с. Сканирующие лазерные системы бегущего луча могут также использоваться для получения изображения объектов контроля. Схема лазерного сканирующего инфракрасного микроскопа для контроля внутренних дефектов полупроводниковых материалов с механическим сканированием объекта контроля и неподвижным лучом лазера отличается низким быстродействием, но имеет высокую разрешающую способность. Схема с системой сканирующих зеркал отличается большим быстродействием (до 50 кад/с при 200—400 строках разложения телевизионного изображения), однако наличие полевых аберраций оптической системы приводит в этом случае к снижению пространственного разрешения.  [c.96]

АБЕРРАЦИЯ — искажение изображений, получаемых в оптических системах при использовании широких пучков света, а также при применении немонохроматического света АБСОРБЦИЯ— объемное поглощение вещества жидкостью или твердым телом АВТОИОНИЗАЦИЯ — процесс ионизации атомов в сильных электрических полях АВТОКОЛЕБАНИЯ— незатухающие колебания в неконсервативной системе, поддерживаемые внешним источником энергии, вид и свойства которых определяются самой системой АДГЕЗИЯ — слипание разнородных твердых или жидких тел, соприкасающихся своими поверхностями, обусловленное межмолекулярным взаимодействием АДСОРБЦИЯ — поглощение веществ из растворов или газов на поверхности твердого тела или жидкости АКСИОМА механических связей — действие связей можно заменить соответствующими силами (реакциями связей), а всякое несвободное твердое тело можно освободить от связей, заменив действие связей их реакциями, и рассматривать его как свободное, находящееся под действием приложенных к нему активных сил и реакций связей АКСИОМЫ [механики (закон инерции) — материальная точка, на которую не действуют никакие силы, имеет постоянную по модулю и направлению скорость статики (система двух взаимно противоположных сил, равных по напряжению и приложенных в одной точке, находятся в равновесии система двух равных по напряжению взаимно противоположных сил, приложенных в двух каких-либо точках абсолютно твердого тела и направленных по прямой, соединяющей их точки приложения, находятся в равновесии всякую систему сил можно, не изменяя оказываемого ею действия, заменить другой системой, ей эквивалентной две системы сил, различающиеся между собой на систему, эквивалентную нулю, эквивалентны между собой)]  [c.224]

Коэфф. А, В, С, D, Е зависят от характеристик оптич, системы (радиусов кривизны, расстояний между оптич, поверхностями, показателей преломления). Обычно классификацию Л. о. с. проводят, рассматривая каждое слагаемое в отдельности, полагая др. коэфф. равными нулю. При этом для наглядное представления об аберрации рассматривают семейство луяей, исходящих из точки-объекта и пересекающих плоскость входного зрачка по окружности радиуса р с центром на оси. Eii соответстиует определённая кривая в плоскости изображений, а семейству концентрич. окружностей в плоскости входного зрачка радиусов р, 2р, Зр и т. д. соответствует семейство кривых в плоскости изображений. По расположению этих кривых можно судить о распределении освещённости в пятне рассеяния, вызываемом аберрацией.  [c.9]

АСТИГМАТИЗМ — одна из геом. аберраций оптич. систем, обусловленная неодинаковостью кривизны оптич, поверхности в разных плоскостях сечения падающего на неё светового пучка. Подробнее см. Аберрации оптических систем.  [c.128]

Реальная оптич. система в приближении Г. о. отличается от идеальной наличием аберраций — дефектов изображения, проявляющихся в том, что точки пространства предметов изображаются в виде пятен со сложной структурой, а также в нарушении подобия между предметом и изображением (см. А беррации оптических систем). В системах, содержащих преломляющие поверхности и работающих в нсмоиохроматич. свете, возникают еще и хромат,ические аберрации, обусловленные явлением дисперсии оптич. материалов. Точные значения аберраций оптич. системы на стадии её проектирования определяют путём расчёта хода лучен, выполняемого на ЭВМ по ф-лам, в основе к-рых лежат законы Г. о. Аналитич. связь аберраций с конструктивными параметрами оптич. системы — радиусами кривизны оптич. поверхностей, расстояниями между их вершинами, показателями преломления сред и т. п.— может быть установлена лишь приближённо на основе использования высших членов разложения эйконала в ряд. Путём проведения спец. расчётов на стадии проектирования аберрации оптич. систем уменьшают до приемлемого уровня.  [c.439]

Весьма совершенным качеством изображения обладают З.-л. с., содержащие афокальный двухлин-зовын компенсатор аберраций Л К со сферич. поверхностями, к-рый может размещаться либо в параллельном пучке лучей перед зеркальной частью (рис. 3), либо в сходящемся пучке после зеркальной части (рис. 4). На рис. 3 представлен объектив, создающий высокока-  [c.85]

К. используется в оптич. устройствах для преобра- зования формы волновых фронтов, формирования изображения в видимой, УФ- или ИК-областях спектра, для коррекции аберрации, контроля асферич. поверхностей, вывода информации из ЭВМ и т. п.  [c.364]

КРИВИЗНА ПОЛЯ ИЗОБРАЖЕНИЯ — одна из аберраций оптических систем, заключающаяся в том, что ruiB pxiio Tb наплучшей фокусировки не совпадает с. фокальной ПЛОСКОСТ1.Ю, а оказывается искривлённой. Радиус кривизны R этой поверхности определяется  [c.491]

В оптике — выпукло-вогнутая линза, ограниченная двумя сферич. поверхностями один из наиб, распространённых типов линз. М., толщина к-рого к центру больше, чем на краях,— собирающая линза при толщине, на краях большей, чем в центре, — рассеивающая линза. М. используется в очках, в объективах (в качестве насадочных линз для изменения фокусного расстояния), для компенсации аберраций оптич. систем (см. Менисковая система).  [c.97]



Смотреть страницы где упоминается термин Аберрации поверхностями : [c.177]    [c.141]    [c.187]    [c.187]    [c.188]    [c.281]    [c.303]    [c.303]    [c.304]    [c.49]    [c.9]    [c.9]    [c.24]    [c.102]    [c.133]    [c.159]    [c.532]    [c.675]    [c.83]    [c.83]    [c.85]    [c.437]    [c.491]    [c.592]    [c.392]    [c.392]   
Теория оптических систем (1992) -- [ c.357 , c.361 ]



ПОИСК



Аберрации 3-го порядка двухзеркальных систем со сферическими поверхностями

Аберрации оптических систем с несферическими поверхностями

Аберрации третьего порядка центрированных систем с несферическими поверхностями

Аберрация

Анализ свойств отдельных элементов оптической системы Анализ сферической аберрации одной преломляющей сферической поверхности при различных положениях предмета

Влияние малых деформаций высшего порядка на аберрации высшего порядка в зависимости от расположения деформированной поверхности между зрачком и изображением

Влияние склеенной поверхности на сферическую аберрацию

Внеосевые аберрации зеркальной поверхности вращения второго порядка. Кома и астигматизм

Волновые аберрации ДЛ и сферических преломляющих поверхностей

Дисторсня — Методы обнаружения поверхностей, ответственных за появление аберраций высших порядков

Исправление аберраций высших порядков деформацией преломляющих (отражающих) поверхностей

Каустическая поверхность. Характер ее симметрии . 82. Аберрации, обусловленные широкими пучками лучей

Отклонение зеркальной поверхности от параболоида Переход от продольной аберрации к волновой и к отклонениям зеркальной поверхности от параболоида

Отклонение зеркальных поверхностей от параболоида для некоторых зеркал с исследованной продольной аберрацией

Распределение аберраций высших порядков лучей по поверхностям оптической системы

Расчет центрированных систем, содержащих несферические поверхности, в области аберраций третьего порядка

Сферическая аберрация и кома. Аплаиатичесцие точки сферических поверхностей

Сферическая аберрация одной преломляющей поверхности в зависимости от положения предмета

Сферическая аберрация плоско-выпуклых линз с несферическими поверхностями

Сферическая аберрация плоской поверхности

Сферическая аберрация сферической преломляющей поверхности

Сферическая аберрация сферической преломляющей поверхности в зависимости от положения предмета

Элементы теории аберраций третьего порядка применительно к несферическим поверхностям. Перенос деформации с одной поверхности на другую



© 2025 Mash-xxl.info Реклама на сайте