Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стабилизация спутника аэродинамическая

Так как моменты аэродинамических сил стабилизируют ось х геометрической симметрии спутника по направлению набегающего потока и на невысоких орбитах (до 400 км) могут на один-два порядка превосходить значения моментов гравитационных сил, то в этих случаях целесообразно использовать моменты аэродинамических сил для пассивной стабилизации спутника. Наиболее естественным и целесообразным путем создания системы пассивной стабилизации представляется путь сочетания гравитационной и аэродинамической стабилизации, поскольку, как показывает проведенный анализ, возможно создать такую конструкцию спутника, в которой эти два эффекта дополняют и усиливают друг друга (см. [60, 65], а также 10 главы 2 настоящей книги).  [c.133]


Системы аэродинамической стабилизации. На круговых и слабо эллиптических орбитах в диапазоне высот от 250 до 350 кж для ориентации оси симметрии спутника по набегающему потоку, направление которого мало отличается от направления касательной к орбите, можно использовать аэродинамические моменты. Если спутник аэродинамически устойчив, то при нарушении нормальной ориентации возникают восстанавливающие моменты по тангажу и рысканью, стремящиеся совместить продольную ось спутника с вектором скорости набегающего потока. Для устранения неопределенности поворота спутника по крену (вокруг продольной оси) можно, например, поместить в корпусе спутника ротор,, вращающийся с постоянной угловой скоростью вокруг оси, перпендикулярной к оси симметрии спутника. Возникающие при вращении ротора гироскопические моменты будут стремиться выставить ось ротора по нормали к плоскости орбиты.  [c.300]

Наиболее экономичным способом стабилизации углового положения КА является стабилизация вращением в заданном, ориентируемом положении и управление скоростью вращения. Настоящая книга посвящена вопросам аналитического анализа динамики КА, стабилизированного вращением, с учетом воздействия на него внешних факторов — аэродинамических сил, геомагнитного поля, особенностей конструкции, а также исследованию систем угловой стабилизации, ориентации и систем стабилизации угловой скорости собственного вращения. В книге представлены материалы по возможному использованию искусственных спутников Земли, стабилизированных вращением, и основные особенности деятельности экипажа в условиях искусственной гравитации. В предлагаемой книге предпринимается попытка  [c.5]

Инженеры фирмы Дженерал Электрик рассматривали также возможность использования равновесного положения спутника относительно направления на Солнце и вектора результирующей аэродинамической силы в качестве, опорных направлений для демпфирования колебаний спутников с гравитационной системой стабилизации.  [c.205]

ВЛИЯНИЕ АЭРОДИНАМИЧЕСКИХ МОМЕНТОВ НА СТАБИЛИЗАЦИЮ И ЛИБРАЦИЮ СПУТНИКА  [c.122]

К числу пассивных методов относится аэродинамическая стабилизация. Продольная ось спутника может быть ориентирована в направлении его полета, если расположить в хвостовой части спутника стабилизатор, обладающий большей парусностью , чем сам спутник (по принципу оперенной стрелы). Системой аэродинамической стабилизации был снабжен советский метеорологический спут-  [c.148]


На высотах менее 600 км от Земли плотность атмосферы относительно велика, поэтому аэродинамические силы, действующие на спутник, не являются пренебрежимо малымц и могут быть использованы для создания управляющих моментов. Если центр давления аэродинамических сил не совпадает с центром масс спутника, то появляется аэродинамический момент, который может быть использован для ориентации и стабилизации спутников.  [c.41]

Точность гравитационной стабилизации во многом зависит от возмущающих воздействий. Установлено, что основными возмущающими моментами являются магнитные моменты, моменты от сил давления солнечного излучения и аэродинамические моменты. Магнитные моменты доминируют на высотах ниже 1850 км. Давление солнечного излучения более всего влияет на спутники, движущиеся по синхронным орбитам. Аэродинамическими моментами можно пренеб1)ечь на высотах более 900 км. Так, для спутника 1963 22А аэродинамический момент на высоте 740 км отклонит его от вертикали на 1°, а на высоте 555 км — уже на 10°.  [c.40]

Комбинированные системы, представляющие собой сочетание газо-ре ктивной системы предварительного успокоения (СПУ) с пассивной аэродинамической системой ориентации, применялись на различных спутниках серии Космос [15]. Здесь газореактиная система использовалась в качестве системы предварительного успокоения, а пассивная — для дальнейшей длительной ориентации и стабилизации искусственного спутника.  [c.7]

Искусственный спутник обладает естественной устойчивой аэродинамической стабилизацией только в том случае, когда центр давлетия аэродинамических сил, действующих на спутник, находится позади центра масс, если смотреть по направлению полета. В этом случае аэродинамический момент стремится вращать аппарат так, чтобы вектор, проведенный из центра давления в центр масс, совпадал по направлению с вектором скорости движения центра масс спутника. При прочих равных условиях аэродинамический момент тем больше, чем дальше центр давления отстоит от центра масс спутника. С целью увеличения аэродинамических сил и удаления центра давления от центра масс спутника применяются аэродинамические стабилизаторы специальной формы.  [c.41]

Одна из возможных схем пассивной системы аэродинамической стабилизации приведена на рис. 2.10. При отклонении продольной оси ОХ КА от набегающего потока 4 в системе возникают восстанавливающие моменты по тангажу и рысканию Му, которые стремятся совместить продольную ось с вектором набегающего потока. Двустепенной пассивный демпфер 3 при относительном движении спутника 1 и стабилизатора 2 создает по осям 0Z 1Л. 0Y демпфирующие моменты и Л/ , т.е. по рысканию и тангажу.  [c.43]

Аэродинамическая стабилизация была применена на искусственных спутниках Космос-149 и Космос-320 [15]. Благодаря небольшой высоте полета этих спутников оказалось возможным применить аэродинамическую систему стабилизации, обеспечивающую трехосную ориентацию относительно вектора набегающего потока и направления в центр Зеши с точностью 5°. Система является комбинированной и состоит из специального аэродинамического стабилизатора в виде усеченного конуса, гщ)0-демпфера и газореактивной СПУ (см. разд. 3.1). Система аэродинамической стабилизации обладает рядом преимуществ по сравнению с широко известными активными системами ориентации, в которых используются газоструйные реактивные двигатели или маховики. Аэродинамическая система не нуждается в датчиках ориентации и специальных исполнительных элементах, которые обеспечивали бы управляющие моменты. Незначительное количество электроэнергии тратится лишь на пoддep) aниe постоянной угловой скорости вращения роторов гироскопов.  [c.43]

Стабилизация I A световым давлением солнечных луней во многом схожа с аэродинамической стабилизацией, так как здесь тоже имеет место аналогичная зависимость управляющих моментов от величины эффективной поверхности стабилизатора и взаимного расположения центра масс и центра давления аппарата. По рравнению с влиянием аэродинамических, магнитных и гравитационных сил влияние светового давления на небольших высотах совершенно ничтожно. Однако с ростом высоты орбиты КА все упомянутые моменты резко уменьшаются по величине, а моменты от светового давления остаются практически постоянными. Для высокоорбитальных искусственных спутников и межпланетных КА на высотах более 2500 км момент сил светового давления является доминирующим моментом и увеличивается по мере приближенвд аппарата к Солнцу.  [c.44]


Рассмотренная картина движения спутника около центра масс выявляет своеобразную гироскопическую стабилизацию относительно направления перигейной касательной, то есть относительно направления скорости центра масс в точке наибольшей интенсивности аэродинамических сил. В самом деле, хотя перигейная касательная вследствие эволюции орбиты поворачивается в абсолютном пространстве, угловое расстояние между вектором кинетического момента и перигейной касательной изменяется относительно начального значения несущественно, так что ось спутника совершает прецессионно-нутационное движение относительно изменяющегося со временем направления перигейной касательной.  [c.257]

Стабилизация и либрационное движение спутника под действием моментов сил негравитационной природы. Аэродинамические силы могут либо возмуш,ать гравитационную стабилизацию либо способствовать ей. Принципиальный интерес представляет и чисто аэродинамическая стабилизация по вектору скорости центра масс спутника. Моменты сил светового давления могут стабилизировать спутник относительно направления на Солнце, а моменты магнитных сил — относительно вектора магнитной напряженности магнитного поля Земли. Представляет также интерес вопрос о магнитных возмуш,ениях гравитационной стабилизации, о совместном влиянии моментов сил светового давления и гравитационных и т. д. Исследованием либрационного движения под действием моментов сил негравитационной природы занимались О. В. Гурко и Л. И. Слабкий (1963), А. А. Карымов (1962, 1964), В. А. Сарычев (1964), В. В. Белецкий (1965), А. А. Хентов (1967) и др.  [c.291]

Примером спутника с аэродинамической (точнее, аэрогироскопиче-ской) системой стабилизации может служить спутник Космос-149 , запущенный 21 марта 1967 года на орбиту с высотой перигея 248 км, высотой апогея 297 км и наклонением плоскости орбиты к плоскости экватора — 48° (А. М. Обухов, 1967 В. К. Михайлов, 1967 В. А. Сарычев, 1967 Л. В. Соколов, 1967). Для обеспечения достаточных восстанавливающих аэродинамических моментов по тангажу и рысканью к спутнику на четырех длинных тонких штангах присоединен аэродинамический стабилизатор, представляющий собой боковую поверхность усеченного конуса.  [c.300]

Стабилизация по крену обеспечивается с помощью установленных на спутнике двух двухстепенных гироскопов. Их суммарный кинетический момент при нормальной ориентации спутника направлен перпендикулярно к плоскости орбиты. Расположение гироскопов таково, что при любом нарушении ориентации спутника возникают восстанавливающие гироскопические моменты по рысканью и крену. Таким образом, в рассматриваемой схеме устойчивость спутника по тангажу обеспечивается аэродинамическим моментом, по крену — гироскопическим моментом, по рысканью — объединенным действием аэродинамического и гироскопического моментов. Спутник с аэрогироскопической системой стабилизации обладает единственным устойчивым положением равновесия.  [c.300]


Смотреть страницы где упоминается термин Стабилизация спутника аэродинамическая : [c.12]    [c.15]    [c.122]    [c.42]    [c.14]   
Механика космического полета в элементарном изложении (1980) -- [ c.148 ]



ПОИСК



Аэродинамическая стабилизация

Аэродинамический шум

Спутник

Стабилизация



© 2025 Mash-xxl.info Реклама на сайте