Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решение задачи внешней для многосвязной области

При исследовании напряженно-деформированного состояния тел с трещинами широкое применение нашел метод сингулярных интегральных уравнений. Он особенно удобен и эффективен при решении плоских задач теории упругости для тел сложной геометрии, содержаш,их включения, отверстия и трещины произвольной формы. Впервые [И, 137, 181] сингулярные интегральные уравнения использовались при исследовании распределения напряжений около прямолинейной трещины (или полосы пластичности) в некоторых классических областях (полуплоскость, полоса, бесконечная плоскость с круговым отверстием). Система произвольно ориентированных прямолинейных трещин изучалась в работах [21, 22, 70]. Рассматривался также случай криволинейных трещин в бесконечной плоскости [16, 40, 74, 92, 117]. В работах [94—96] основные граничные задачи для многосвязной области, содержащей изолированные криволинейные разрезы и отверстия произвольной формы, сведены к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. Эти результаты обобщены на случай, когда разрезы выходят на границу тела, а также соединяют отверстия между собой и (или) с внешней границей [97]. К настоящему времени появилось большое количество работ, в которых методом сингулярных интегральных уравнений изучаются плоские задачи теории трещин. Обзор этих исследований имеется в работах [5, 32, 45, 54, 70, 95, 100].  [c.5]


Рассмотрим первую основную задачу для конечной односвязной области. Так как искомые аналитические функции ф(г) и i j(z) однозначны в данной области S и упругие постоянные Я и х не входят в граничное условие (6.109), то решение этой задачи, даваемое функциями ф(2), -113(2), не зависит от упругих постоянных X и Х, иначе говоря, при заданных внешних силах на границе конечной односвязной области напряженное состояние в заполняющем ее теле не зависит от упругих свойств материала. Для конечной многосвязной области решение, определяемое функциями ф(г), я з(2), зависит от материала среды. Чтобы решение, определяемое функциями ф(2), 1 з(2), не зависело от упругой постоянной ус, главные векторы сил, приложенных к каждому из контуров Lh, как это следует из формул (6.100), (6.101), должны быть в отдельности равны нулю. Именно в этом случае напряженное состояние не зависит от упругих постоянных тела. Этот результат и составляет теорему Мориса Леви, лежащую в основе метода нахождения напряженного состояния в каждой точке изотропной однородной среды на мо-  [c.132]

В первой главе изложен математический аппарат, применяемый далее при решении основных граничных задач плоской теории упругости для тел с криволинейными разрезами. Получены сингулярные интегральные уравнения для многосвязных областей с отверстиями и разрезами в общем случае, когда разрезы выходят на границу тела, а также соединяют отверстия между собой и (или) с внешней границей.  [c.3]

Многосвязная область с отверстиями и трещинами. Пусть в бесконечной плоскости имеется один замкнутый криволинейный разрез L, разбивающий всю плоскость на две области внутреннюю 5+ и внешнюю 5 Предположим, что при переходе через контур L напряжения остаются непрерывными q t)=0), а вектор смещений получает скачок g t). Тогда комплексные потенциалы Ф г) и 4 (2) определяются по формуле (1.66), а неизвестная функция g t) удовлетворяет уравнению (1.67) (при q t)=0), т. е. сингулярное интегральное уравнение первой основной задачи (при заданной на границе L нагрузке) является одним и тем же для внутренней и внешней области. Из теоремы единственности следует, что для существования решения необходимо выполнение условий равновесия области 5+ (равенство нулю главного вектора и главного момента внешних усилий, действующих на контуре L), т. е. интегральное уравнение в этом случае имеет решение при дополнительных условиях, которым должна удовлетворять правая часть уравнения (следовательно, союзное однородное интегральное уравнение имеет нетривиальное решение). Таким образом, задача является некорректной. Для ее регуляризации в работах [94,  [c.19]


Основные граничные плоские и антиплоские задачи теории упругости для многосвязной области, содержащей криволинейные разрезы и отверстия произвольной формы, сведены в работах [94—96] к системе сингулярных интегральных уравнений первого рода по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. При этом предполагалось, что контуры разрезов и отверстий не пересекаются между собой (см. параграф 3 данной главы). Краевые трещины рассматривались только в некоторых частных случаях граничного контура (окружность, прямая), когда удается построить модифицированные сингулярные интегральные уравнения, не содержащие искомых функций на этом контуре [70, 95]. В последнее время изучались также задачи в случае произвольной симметричной области с краевой трещиной, находящейся на оси упругой и геометрической симметрии [27, 53, 58, 104] (см. также параграфы 3—5 четвертой главы). Ниже, следуя работе [97], приводятся обобщения указанных выше результатов на общий случай многосвязной области с разрезами и отверстиями, когда разрезы одним или двумя концами могут выходить на внешнюю границу и контуры отверстий. Получены численные решения построенных интегральных уравнений при одноосном растяжении бесконечной плоскости с одним или двумя круговыми отверстиями, на контуры которых выходят радиальные трещины.  [c.33]

Отметим, что полученное выше обобщение сингулярных интегральных уравне- I ний двухмерных задач теории упругости на общий случай многосвязных областей с отверстиями и произвольными разрезами (изолированными, краевыми, соединяющими контуры отверстий между собой и (или) с ц внешней границей) могут послужить основой для разработки комплекса программ общих методов расчета пластин с трещинами. Проведенная численная реализация на модельных и новых задачах показала высокую эффективность предлагаемого метода решения.  [c.40]

Обзор решений основных граничных задач для многосвязных областей методами интегральных уравнений содержится в работах 1102, 167, 2651. Предложенный в данной работе (см. также [2111) подход к реше1шю таких задач впервые был применен Ларднером 13651 при рассмотрении односвяз1юй области, нагруженной на границе самоуравновешенными усилиями. При этом как для внутренней, так и для внешней области использовались представления типа (V.1) (без дополнительных слагаемых). Разрешимость полученного сингулярного интегрального уравнения не исследовалась. Отметим также работы 1421—423], в которых построены сингулярные  [c.152]

К настоящему времени решены уже многие плоские задачи о напряженно-деформированном состоянии тел с отверстиями и трещинами, однако в основном они касаются случаев неограниченных областей (плоскость, полуплоскость, полоса). Изучение таких задач было начато Бови [135] и развито затем другими исследователями [И. 29, 30, 45, 65, 70, 95]. Данная глава посвящена решению задач об упругом равновесии конечной многосвязной области с трещинами и отверстиями, среди которых имеется хотя бы одно круговое. При этом, как и в предыдущей главе, понижен порядок исходной системы сингулярных интегральных уравнений при использовании общего аналитического решения первой основной задачи для бесконечной плоскости с круговым отверстием. Указанный подход позволяет более эффективно решать задачи для многосвязных областей различных внешних очертаний, ослабленных трещинами и круговым отверстием. При этом сравнительно легко могут быть рассмотрены случаи действия сосредоточенных или разрывных нагрузок на круговом граничном контуре, а также трещины, выходящие на край указанного отверстия.  [c.183]


Смотреть страницы где упоминается термин Решение задачи внешней для многосвязной области : [c.163]   
Методы потенциала в теории упругости (1963) -- [ c.431 ]



ПОИСК



Задача внешняя

Область многосвязная

Решение задачи () для многосвязной области

Решение задачи внешней Дирихле для многосвязной области

Решение задачи внешней Неймана для многосвязной области



© 2025 Mash-xxl.info Реклама на сайте