Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Световой поток — Определе

Единицы светового потока можно определить также согласно формуле Ф = WH. В этом случае единицей светового потока является единица мощности — ватт (Вт).  [c.15]

До создания лазеров в оптике и спектроскопии практически безраздельно господствовал принцип линейности. Согласно этому принципу реакция вещества на действие света линейно зависит от напряженности действующего светового поля. Отсюда однозначно следует, что оптико-спектроскопические параметры (показатель преломления, коэффициент поглощения, эффективность люминесценции и рассеяния и др.) не зависят от интенсивности световых потоков и определяются только свойствами вещества.  [c.298]


Диффузное светопропускание оценивается как процент общего проходящего светового потока и определяется по специальной методике. Диффузное светопропускание больше, чем прямое.  [c.81]

Таким образом, единичный световой поток — люмен — определяется как произведение силы света, равной одной канделе, на единичный телесный угол — один стерадиан.  [c.79]

До введения СИ основной светотехнической величиной являлся именно световой поток, который определялся как мощность светового излучения, оцениваемая по производимому им ощущению. Это определение подчеркивает субъективный, физиологический характер светотехнических величин.  [c.241]

Световой поток F определяется как мощность лучистой энергии, оцениваемая по световому ощущению, которое она производит на человеческий глаз. Единицей измерения светового потока является люмен. Для воспроизведения единицы светового потока служит Государственный световой эталон.  [c.201]

Визуальная система величин и единиц предназначена для измерений характеристик светового излучения, т. е. той части излучения в видимой области спектра, которая воздействует на человеческий глаз. Поэтому для образования системы необходимо знать функцию преобразования потока излучения в световой поток, которая определяет спектральную чувствительность глаза. Эта функция задается значениями относительной спектральной световой эффективности монохроматического излучения для дневного зрения К(Я). Относительная спектральная световая эффективность определяется как отношение двух потоков излучения Фе, и Фе. % соответственно с длинами волн Кт и я, вызывающих в точно определенных фотометрических условиях зрительные ощущения одинаковой силы, т. е. для каждой длины волны  [c.16]

Измерение светового потока. Световой поток можно определить через освещенность, силу света или яркость.  [c.296]

Выше было разобрано, как ЭМИ, осуществляя на резонансных для живых организмов частотах энергетические (т. е. определяемые амплитудой и энергией излучения) процессы, приводят к появлению информационных биологических эффектов, не зависящих от мощности излучения в широком диапазоне изменения последней. Тот факт, что явления, имеющие информационную природу, порождаются энергетическими процессами, это не некоторый специфический для ЭМИ случай, а общая закономерность. Чтобы сделать ее более очевидной, приведем хотя и примитивный, но очень наглядный пример из обыденной жизни. Когда зажигается зеленый свет светофора, пешеход переходит дорогу. Зеленый сигнал оказывает информационное действие — путь свободен. Информация не изменит своего содержания, если лампочка будет менее яркой (но свет ее будет еще воспринимаем) или более яркой (но еще не будет слепить глаза). Энергия воспринимаемого светового потока не определяет энергии, затрачиваемой на движение через дорогу. Но если бы предметом исследования был энергетический процесс, происходящий в глазах, — выход биохимических реакций в светочувствительных элементах глаза, то были бы зарегистрированы закономерности, типичные для энергетических процессов —  [c.22]


Возмущающее ускорение / ИСЗ, вызываемое световым давлением, направлено по световому потоку и определяется но формуле  [c.82]

Относительное изменение освещенности, или степень контрастности изображения характеризуется отношением изменения количества падающего света к полному световому потоку и определяется зависимостью  [c.100]

Сила света. Часто возникает необходимость определить величину светового потока, излучаемого в единичный телесный угол. С этой целью для точечного источника вводится фотометрическое понятие силы света. Под силой света понимается величина светового потока, излучаемого точечным источником в единичном телесном угле. Если в телесном угле dQ излучается световой поток Ф, то сила света в данном направлении будет  [c.11]

Все остальные фотометрические величины являются производными. Исходя из единицы силы света, можно определить единицы измерения остальных величин. В формуле йФ (dil, подставляя / = 1 св, dQ 1 стерадиан (ср), получим единицу измерения светового потока, называемую люменом (лм)  [c.14]

Принимая в качестве приемника световой энергии глаз. Международная осветительная комиссия (МОК) определила световой поток как поток лучистой энергии, оцениваемой по зрительному ощущению.  [c.52]

Располагая эталоном, дающим определенный световой поток, выражаемый в люменах, можно было бы определить этот поток в ваттах и установить связь между световыми и энергетическими единицами. Однако следует иметь в виду, что вследствие весьма различной чувствительности глаза к разным длинам волн сравнение характеризовало бы лишь экономичность примененного эталона и ничего не говорило бы об энергетической чувствительности глаза.  [c.54]

Существуют также фотометры, позволяющие непосредственно определять суммарный световой поток, а следовательно, и среднюю сферическую силу света источника (шаровой фотометр или интегратор), освещенность поверхности (люксметр), яркость источника и т. д.  [c.58]

Величина апертуры интерференции 2ш тесно связана с допустимыми размерами источника. Теория и опыт (см. 17) показывают, что с увеличением апертуры интерференции уменьшаются допустимые размеры ширины источника, при которых еще имеет место отчетливая интерференционная картина. Поскольку освещенность пропорциональна ширине источника, увеличение апертуры интерференции приводит к уменьшению освещенности интерференционной картины. Вместе с тем, величина интерферирующих световых потоков, связанная с размерами интерференционного поля, определяется, согласно 7, выражением Ф = ВаО. (принимаем, что источник излучает по направлению, нормальному к своей поверхности). При заданной яркости источника В величина потока зависит от произведения ай, причем о согласно сказанному тем больше, чем меньше апертура интерференции, а й тем больше, чем больше апертура перекрывающихся пучков. При обсуждении вопроса, может ли данная интерференционная схема обеспечить большие размеры и хорошую освещенность интерференционной картины, надо учитывать, возможно ли осуществить одновременно большую апертуру перекрывающихся пучков (2ф) и малую апертуру интерференции (2(о).  [c.73]

Сила возникающего в цепи фототока I зависит при неизменном составе и мощности падающего светового потока Ф от напряжения 11 между электродами (рис. 26.2, а). Эта зависимость носит название вольт-ампер-ной характеристики. Из рисунка видно, что при некотором напряжении />0 сила фототока достигает насыщения, т. е. все электроны, испущенные фотокатодом, попадают на анод. Следовательно, сила фототока насыщения 1и определяется количеством электронов, испускаемых фотокатодом в единицу времени под действием света, и является мерой фотоэлектрического действия данного светового потока. Если изменять значения светового потока Ф, то получится семейство кривых для данного фотокатода (рис. 26.2, б).  [c.157]

Светосила. Для оценки воздействия спектрального прибора на приемник излучения применяется характеристика, называемая светосилой. Численно светосилу определяют, как коэффициент пропорциональности, связывающий измеряемую приемником фотометрическую величину (световой поток, освещенность) и яркость в. плоскости щели. Светосила спектрографа определяется соотношением  [c.17]


При фотоэлектрической регистрации сигнал на выходе установки определяется световым потоком, прошедшим через спектрометр. Следовательно, он будет зависеть как от ширины щелей,, так и от их высоты.  [c.122]

Определим коэффициент усиления среды. Пусть стационарный световой поток распространяется в среде в направлении оси 2. Пренебрежем вкладом спонтанного излучения в увеличение интенсивности пучка, а также исключим из рассмотрения потери излучения, вызванные рассеянием на неоднородностях, поглощением посторонними примесями и т. п. Тогда на основании закона сохранения энергии получим  [c.288]

Можно указать на несколько факторов, вызывающих появление подобных дефектов. К ним относятся в первую очередь кинетические факторы, связанные с тем, что кристалл не успевает стать идеальным в процессе кристаллизации и последующей обработки. Далее следует указать, что при не слишком низких температурах из-за конкуренции энергетического и энтропийного факторов присутствие в кристалле некоторого количества дефектных мест будет отвечать термодинамическому равновесию. Наконец, уже созданные идеальные кристаллы могут оказаться испорченными под влиянием факторов (механической обработки, действия радиации), нарушающих строгую периодичность расположения атомов. По этим причинам реальные кристаллы имеют дефекты, и физические свойства кристалла формируются под совместным действием строгой периодичности и отступлений от нее. Можно привести немало примеров, свидетельствующих о важности учета вклада дефектов в формирование свойств материалов. Так, без учета этого вклада оказалось невозможным построение теории прочности и пластичности материалов, поскольку эти характеристики определяются степенью сопротивления тела действию сил, смещающих разные части тела относительно друг друга. Под действием радиации (мощные световые потоки, пучки электронов, нейтронов, заряженных ядер и т. д.). отдельные атомы или группы атомов оказываются выбитыми из своих правильных положений, и поэтому структура и свойства облученных материалов необъяснимы без оценки роли дефектов и т. д. В связи с этим важной составной частью физики твердого  [c.228]

Ясно, что /i и /2 пропорциональны интенсивности светового потока S в различные моменты времени. Промежуток времени -с между этими моментами определяется разностью Д хода лучей от А до фотоприемников (предполагается, что время движения сигнала от фотоприемников до коррелятора одинаково). Следовательно, X = Д/с и силы токов можно записать в виде /i = I t), I2 = I(t + т). Измеряемой в эксперименте величиной является  [c.32]

МОДУЛЯЦИЯ КОЛЕБАНИЙ — изменение разл. характеристик колебаний, медленное по сравнению с их периодом (см. Модулированные колебания). МОДУЛЯЦИЯ СВЕТА (модуляция оптического излучения) — изменение по заданному закону во времени амплитуды (интенсивности), частоты, фазы или поляризации колебаний оптич, излучения. Применяется для управления световыми пучками с целью передачи информации при помощи оптич. сигналов или для формирования световых потоков с определ. параметрами. В зависимости от того, какая характеристика подвергается изменению, различают амплитудную, фазовую, частотную или поляризационную М. с. Для излучений видимого и ближнего ИК-диапааонов (Ю —8-10 Гц) возможны частоты модуляции с верх, пределом до 10 — 10 Гц. Естественная М. с. происходит при испускании света элементарными излучателями (атомами, ионами) независимость испускания такими излучателями фотонов и различие в частоте последних приводит к тому, что излучение содержит набор частот и флуктуирует по амплитуде, т. е, является амплитудно-частотно-модулированным. Естеств. частотная М. с. происходит также при неупругом рассеянии света на внутримолекулярных колебаниях (см. Комбинационное рассеяние света) и на упругих волнах в конденсиров. средах (см. Мандельштама — Бриллюана рассеяние). В обоих случаях рассеянный свет содержит частоты, отличные от частоты падающего света.  [c.183]

Мощность светового потока излучения пропорциональна силе света / источника и телесному углу Й, который это излучение заполняет йФ = Idii, ИЛИ Ф = /Ф. Световой поток можно определить как поток излучения, оцененный светоадаптироваииыы глазом согласно выра-  [c.35]

Световой поток Р Мощность светового излучения, пропорциональная силе света / источника и телесному углу с1ш, который это излучение заполняет ёР=1 йи> Люмен (лм) Световой поток можно определить как поток излучения, оцененный светлоадаптированным глазом согласно выражению Р к j V (А) Р (А) й (X)  [c.46]

J верхности площадью da. Выделим излучение этой поверхности в телесном угле 1-3 dQ (рис. 1.3). Угол между осью выделенного светового пучка и внешней нормалью к поверхности da обозначим через ф. Определим световой поток йФ, излучаемый дайной поверхггостью da под телесным углом dQ. Искомый световой поток будет пропорционален величине телесного угла, под которым излучается свет, и видимой площади светящейся поверхности (d r- os ф), т. е.  [c.12]

Следовательно, яркость в данном направлении определяется величиной светового потока, излучаемого с единицы видимой в данном направлении поверхности в единицу телесного угла. Другими словами, она численно равна силе света в данном направлении, создаваемой единицей площади видимой поверхности источника. Под види юй площадью светящейся поверхности понимается проекция площади светящейся поверхгюсти da в направлении, перпендикулярном оси пучка.  [c.12]

Ксли измеряется световой поток с1Ф, излучаемый площадкой dS во все стороны (в пределах телесного угла 2л), то величину Д = d/dS называют свйтилгостью поверхности. Мы видим, что освещенность Е и светимость R определяют одинаковым выражением, но в первом случае измеряют поток, падающий на площадку, а но втором — излучаемый ею.  [c.41]

Два отверстия Pj и Р2 в непрозрачном экране А также делят на два пучка световой поток, исходящий из щели S (см. рис. 6.48). Эти два пучка затем соединяются в точке Р, и в результате пространственной когерентности такой системы на экране В возникает интерференционная картина. Если для обеих установок апертура 2м интерференции одинакова, то для определения видимости интерференционной картины на экране В, получившейся при взаимодействии пучков света от отверстий Р] и Р2, можно воспользоваться формулой (5.35) для щелевого некогерентного источника света. Так как V = sinxA , где параметр X определялся отношением ширины щели 2а к ширине интерференционной полосы Л/ = kDi/d, то х = 2nadi /.Di) и видимость интерференционной картины  [c.309]


Для истолкования механизма явления очень важен следующий экспериментальный результат. Оказалось, что Уздд не зависит от светового потока и для данного материала катода определяется частотой падающего на него излу шния. Если освеш ать фотокатод светом различной частоты, то наблюдается линейная зависимость между измеряемым на опыте задерживающим потенциалом (соответствующим условию i == 0) и частотой падающего света  [c.432]

Эти экспериментальные результаты никак нельзя объяснить, оставаясь в рамках классической физики. Действительно, предположив, что электрон вылетает из металла под действием све ТОБОЙ волны, нужно рассматривать ее как некоторую вынуждающую силу, амплитуда которой должна определять максима.льную скорость вылетевших электронов. Следовате.ньно, Кзщ должно быть пропорциональным световому потоку, а в эксперименте, как уже указывалось, установлено отсутствие такой зависимости. Непонятна также зависимость Уз д от частоты падающего света. Казалось бы, эффект должен иметь резонансный характер и наблюдаться лишь в том случае, когда частота собственных колебаний электрона в металле совпадает с частотой падающего света. Между тем эффект усиливается при v v p, а наблюдавшиеся в некоторых условиях максимумы зависимости силы фототока от частоты облучающего катод света появляются лишь н специальных условиях эксперимента и не должны влиять на установление основного механизма процесса.  [c.433]

Мы можем, конечно, представить испускательную способность не в функции частоты V, а в функции длины волны Я, т. е. построить график не Е , а х (см. рис. 36.3, 6). Поскольку площади как под той, так и под другой кривой определяют интегральную энергию излучения, то рационально выбрать масштабы так, чтобы площади эти были равны. Выделяя каждый раз площадку, дающую величину одного и того же светового потока йФ, приходящегося на интервал частот или интервал соответствующих длин Еолн дХ, найдем  [c.688]

В газонаполненных фотоэлементах пропорциональность между силой фототока и световым потоком нс соблюдается. Кро.ме того, такие фотоэле.мепты обладают заметной инерционностью. Дело в том, что ток газонаполненного фотоэлемента лишь частично определяется электронами, большую ]юль в нем играют положите.ть-иые ИОНЫ, которые имеют большую массу и движутся медленно. Инерционность газонаполненных фотоэлементов зависит от рода газа, наполняющего фотоэлемент, давления газа и напряжения, поданного на фотоэлемент.  [c.171]

Допустим, что система электронных уровней возбуждается интенсивным световым потоком ак (радиация накачки) в канале /- 3. В этом случае куц кт и, следовательно, влияние теплового излучения можно не учитывать. Кроме того, будем считать, что Рз2 Рз1 и 31 Р21- Первое из этих допущений определяет метаста-бпльность (долгоживучесть) уровня 2. С учетом данных предположений формулы (35.22) становятся проще  [c.276]

В отличие от активных модуляторов добротности, у которых момент выключения потерь определяется в)1еш-ними факторами, включение добротности пассивными модуляторами полностью определяется плотностью излучения внутри резонатора и их оптическими свойствами. В качестве пассивных модуляторов (или пассивных затворов) могут использоваться просветляющиеся фильтры, пленки, разрушающиеся под действием излучения, полупроводниковые зеркала с коэффициентом отражения, зависящим от интенсивности света, органические красители и т. д. Особое место среди пассивных затворов занимают затворы на основе просветляющихся фильтров. Исключительная простота таких затворов в сочетании с высокими параметрами получаемых с их помощью моноимпульсов излучения обеспечила им весьма широкое распространение. В основе работы этих затворов лежит способность просветляющихся фильтров обратимо изменять коэффициент поглощения под действием интенсивных световых потоков. Введение в резонатор пассивного затвора (рис. 35.10) приводит к увеличению порогового уровня накачки, в результате чего к моменту начала генерации па метастабилышм уровне накапливается значительное число активных частиц. При возникновении генерации лазерное излучение, проходящее через затвор, резко уменьшает его потери и запасенная энергия излучается в виде мощного импульса. Длительность этого импульса почти такая же, как и в режиме мгновенного включения добротности. Применение этих затворов значительно упрощает конструкцию генератора и позволяет получить параметры выходного импульса, близкие к предельным.  [c.284]

Фоточувствительность полупроводников. Эта величина определяется как отношение фотопроводимости к плотности светового потока, падающего на полупроводнпк  [c.178]


Смотреть страницы где упоминается термин Световой поток — Определе : [c.294]    [c.369]    [c.80]    [c.716]    [c.256]    [c.158]    [c.16]    [c.18]    [c.341]    [c.639]    [c.159]    [c.167]   
Справочник металлиста Том 1 (1957) -- [ c.0 ]



ПОИСК



1.125, 126 — Определяемые

Световой поток



© 2025 Mash-xxl.info Реклама на сайте