Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Карбидное превращение при отпуске

Другими словами, в третьем превращении при отпуске происходит ряд изменений, приводящих к снятию внутренних напряжений и карбидным превращениям. При 400°С третье превращение заканчивается, и сталь состоит из феррита и цементита. Дальнейшее повыщение температуры приводит, к коагуляции частиц феррита и цементита, что легко наблюдать по микроструктуре при больших увеличениях.  [c.274]

При значительном содержании карбидообразующих элементов и образовании специальных карбидов изменяется характер фазовых превращений при отпуске стали. Выделение специальных карбидов происходит при довольно высокой температуре (около 500—600° С) до этой температуры остаточный аустенит и мартенсит сохраняются, хотя мартенсит вследствие выделения метастабильного цементита теряет определенное количество С. После выделения специальных карбидов из мартенсита и аустенита при высоких температурах отпуска аустенит при охлаждении претерпевает карбидное превращение. Это вызывает  [c.170]


Это позволило выделить четыре цикла термодинамической самоорганизации структур и определить длительность каждого цикла, отвечающих спонтанному образованию зародышей карбидов цементитного типа и увеличению их числа (цикл I) росту пластинок карбида с сохранением когерентности решеток цементита и потери когерентности (цикл II) коагуляции частиц цементита и потери когерентности (цикл Ш) карбидному превращению, при котором в пределах цикла IV сосуществует два типа карбидов (РеСг)зС и (РеСг)7Сз. Точка 5 на рисунке 3.34 отвечает длительности отпуска 3754 мин, при достижении которой завершается карбидное превращение (содержание Сг в карбиде увеличивается до 48,4%). Этот результат согласуется с диафаммой равновесия и экспериментальными данными.  [c.209]

Первая стадия отпуска проходит при нагреве до 200 °С (первое превращение при отпуске). Из мартенсита вьщеляются мельчайшие частицы карбидной фазы (типа Ре2,4- -карбид). Одновременно тетрагональность решетки уменьшается. Образуется структура отпущенного мартенсита.  [c.441]

Фазовые превращения при отпуске принято разделять на три превращения в зависимости от изменения удельного объема стали. Распад мартенсита и карбидное превращение вызывают уменьшение объема, а распад аустенита — его увеличение.  [c.186]

Карбидная фаза при отпуске претерпевает специфические превращения. С повышением температуры увеличивается подвижность атомов легирующих элементов, благодаря чему становится возможным их перераспределение между цементитом и ферритом. Концентрация легирующих элементов в цементите увеличивается и при определенных значениях решетка цементита перестраивается в решетку того специального карбида, который может находиться в данной стали в равновесии с ферритом Образовавшиеся дисперсные карбиды могут значительно увеличивать твердость. Это одна из причин наблюдающегося явления так называемой вторичной твердости, т. е. увеличения твердости после отпуска в интервале 500— 600° С (наблюдается в сталях, легированных хромом, молибденом, ванадием и некоторыми другими элементами).  [c.219]

Кроме того, изменяются размеры и форма карбидных частиц она приближается к сфероидальной. Наряду с карбидным превращением при этих температурах отпуска также происходит изменение субструктуры—полигонизация а-фазы и релаксация макро- и микронапряжений, возникающих при закалке в процессе мартенситного превращения. Образующуюся после отпуска при 350—400°С структуру обычно называют трооститом отпуска.  [c.213]

Карбидная фаза при отпуске претерпевает специфические превращения. С повышением температуры увеличивается подвижность атомов легирующих элементов, благодаря чему становится возможным их перераспределение между цементитом и ферритом. Концентрация легирующих элементов в цементите увеличивается и при определенных значениях решетка цементита перестраивается в решетку того специального карбида, который может находиться в данной стали в равновесии с ферритом . Образовавшиеся дисперсные карбиды могут значительно увеличивать твердость.  [c.247]


Изотермическая обработка в области температур второй ступени (450—250°) повышает сопротивление износу. Первое превращение при отпуске (распад мартенсита,) наблюдается при тех же температурах, что и для стали (80— 100°). Однако второе превращение (распад остаточного аустенита) и третье (карбидное превращение) переносятся в область более высоких температур (400—450°).  [c.93]

Изменение твердости при отпуске является следствием изменений в строении, происходящих при отпуске. Нагрев до 100°С сопровождается слабым повышением твердости (на 1—2). вследствие превращения тетрагонального мартенсита в отпущенный (это слабое повышение твердости наблюдается лишь в высокоуглеродистых сталях). С дальнейшим повышением температуры отпуска твердость падает, вследствие укрупнения карбидных частиц и обеднения углеродом -твердого раствора. Прямолинейная зависимость падения твердости от температуры нарушается в районе 200—250°С, т. е. при превращении остаточного аустенита. При этих температурах падение твердости замедляется, а в высокоуглеродистых сталях наблюдается даже некоторое повышение вследствие превращения остаточного аустенита в более твердый отпущенный мартенсит. Общая тенденция состоит все же в том, что твердость с  [c.279]

Это связано с тем, что процессы при отпуске имеют диффузионный характер и большинство легирующих элементов замедляет карбидное превращение, в особенности на стадии коагуляции.  [c.358]

Помимо теплостойкости другим важнейшим свойством быстрорежущей стали является вторичная твердость, получаемая при отпуске. Отпуск на вторичную твердость сопровождается эффектом дисперсионного твердения, т. е. выделением при отпуске мелкодисперсных фаз-упрочнителей с карбидной природой. В результате твердость стали после отпуска возрастает. Для получения при закалке высоколегированного твердого раствора за счет более полного растворения тугоплавких карбидов быстрорежущей стали температура аустенизации должна быть высокой — до 1300 °С для сталей с высоким содержанием вольфрама. После закалки сталь сразу же подвергают многократному (обычно трехкратному) отпуску при 560 °С по 1 ч. Многократным отпуск делают для более полного и эффективного превращения остаточного аустенита в мартенсит.  [c.95]

При нагреве углеродистых сталей с дисперсными перлитными структурами происходят коагуляция и сфероидизация карбидов. В легированных сталях возможны и карбидные превращения если перлитная структура появилась при значительном переохлаждении аустенита (например, структура троостита), когда образование специальных карбидов затруднено, отпуск при 600 — 700 °С вызовет превращение цементита в специальный карбид.  [c.189]

Влияние легирующих элементе на свойства стали заключается в основном в воздействии их на характер превращения переохлаждённого аустените и на состав карбидных или интерметаллидных фаз, образующихся в стали и выделяющихся в процессе распада мартенсита при отпуске.  [c.73]

Мартенсит при нагреве очень легко переходит в структуры отпуска. Сохранение его в стали в чистом виде без карбидных выделений при обратном нагреве выше точки невоз.можно. Это обстоятельство не позволяло до сих пор доказать обратимость мартенсит-чого превращения, которая была доказана Г, В. Курдюмовым путем  [c.185]

На карбидные превращения при отпуске легирующие элементы сильно влияют при температурах выше 450 °С, когда становится возможньш их диффузионное перераспределение. В результате при отпуске легированной стали выше 450 °С в структуре стали появляются специальные карбиды, которые способствуют повышению ее твердости и прочности.  [c.442]

Многие легируюшде элементы повышают температуры II и III превращений, уменьшают скорость коагуляции карбидов и влияют на карбидные превращения при отпуске.  [c.188]

На карбидные превращения при отпуске легирующие элементы сильно вляют при температурах выше 450°С, когда становится возможным их диффузионное перераспределение. В результате этого влияния образуются специальные карбиды. Возможны два механизма их появления. Во-первых, концентрация карбидообразующего легирующего элемента в результате его диффузионного перераспределения между а-раствором и цементитом возрастает до такой величины в цементите, что он превращается в специальный карбид. Например, легированный цементит (Ре, Сг)зС так превращается в карбид хрома (Сг, Ре)7Сз. Во-вторых, специальный карбид может зародиться прямо в пересыщенном легирующим элементом а-растворе. Первоначально могут образовываться частично когерентные выделения промежуточного специального карбида. Его выделение сопровождается растворением цементита, который в легированной стали является менее стабильной фазой. Частицы специальных карбидов обычно предпочтительно зарождаются на дислокациях в мартенсите. При более высоких температурах отпуска промежуточный специальный карбид заменяется стабильным специальным карбидом.  [c.345]


Последовательность карбидных превращений при отпуске исследовалась Б. А. Апае-вым, В. Г. Пермяковым и другими исследователями.  [c.192]

Указанные стадии превращения при отпуске обычно не происходят строго в пределах указанных выше температурных интервалов. Отдельные стадии превращений накладываются друг на друга. Отпуск до 250° С называется низким отпуском. Структурой низкого отпуска является отпущенный мартенсит, состоящий из смеси пересыщенного твердого раствора и сопряженных с ним карбидных частиц. Отпуск стали при 350—500° С называется средним, а при 500—600° С — высоким отпуском. Структурой стали после среднего отпуска является тростит отпуска, тогда как структура стали после высокого отпуска состоит из сорбита отпуст. Тростит и сорбит  [c.123]

Уменьшение количества карбидной фазы и повышение коррозионной стойкости стали с увеличением степени пластической деформации при ВТМО носит затухающий характер. Это можно объяснить частичной рекристаллизацией сильно деформированного аустенита. Распад мартенсита, образовавшегося из рекристаллизационных зерен, по-видимому, протекает так же быстро, как и мартенсита, полученного при обычной закалке. При большей пластической деформации аустенита (е =1,0) в закаленной стали возникает значительное количество продуктов немартенситного превращения, коррозионная активность которых выше, чем мартенсита. Это приводит к понижению коррозионной стойкости стали, подвергнутой ВТМО с большими степенями деформации. С увеличением степени пластической деформации при ВТМО тетрагональность мартенсита возрастает с 1,038 до 1,050, т.е. процесс распада мартенсита и выделение карбидной фазы при отпуске после ВТМО, по крайней мере при принятых нами режимах ВТМО, у стали 45 происходит медленнее, чем после контрольной закалки.  [c.58]

Снятие внутренних напряжений и карбидное превращение (третье превращение при отпуске). При температуре 350—400 ""С полнсч. тью завершается процесс выделения углерода из а-раствора (мартенсита), происходит нарушение когерентности н обособление рСЕцеток феррита и карбида, связанное с одновременным протеканием карбидного превращения, в результате которого образуется цементит РегС -> РелС,  [c.186]

Влияние легирующих элементов на процессы, протекающие при отпуске углеродистой стали, неоднозначно. На первую стадию распада мартенсита (при нагреве до 200 °С) лепфующие элементы не оказывают какого-либо существенного влияния. На вторую стадию распада мартенсита (третье превращение при отпуске) многие легируюпще элементы влияют очень сильно, замедляя процесс образования и рост карбидных частиц (е-карбида и РезС) и соответственно тормозя процесс распада мартенсита. В легированных сталях состояние отпущенного мартенсита, обладающего высокой твердостью, сохраняется вплоть до температур 450-500 °С. Наиболее сильно тормозят распад мартенсита Сг, W, Мо, V, Со и Si.  [c.442]

Таким образом, второе превращение при отпуске сопровождается почти полным распадом остаточного аустенита (см. рис. 54) одновременно с этим продолжается выделение углерода из тетрагонального мартенсита с некоторым снижением напряжений в нем. К концу второго превращения при отпуске содержание углерода в мартенсите составляет 0,15—О 20%, При этом становится заметным рост карбидных частиц, ранее ввделившихся из мартенсита.  [c.158]

При дальнейшем повышении температуры (выше 400 С) наступает четвертое превращение при отпуске, которое характеризуется полным снятием внутренних напряжений и коагуляцией карбидных частиц в зернистом цементите. При температуре вьш1е 400° G отпущенная сталь состоит из феррита и зернистого цементита. Различная степень дисперсности цементита предопределяет и структуру отпущенной Стали. Сталь, отпущенная при 350—500° G, имеет структуру троостита, при 500—600° С — сорбита. Причем в первом случае частицы цементита более мелкие, чем во втором. Это оказывает влияние на свойства стали. Так, закаленная эвтектоидная сталь с твердостью НВ 650 после отпуска при 450° G имеет структуру троостита с твердостью НВ4(Ю, а после отпуска при 550° G — структуру сорбита с твердостью ЯВЗОО.  [c.158]

Снятие внутренних напряжений и карбидное превращение (третье превращение при отпуске). При температуре 350—400° С полностью завершается процесс выделения углерода из а-раствора (мартенсита) и происходит нарушение когерентности и обособление решеток феррита и карбида. Одновременно протекает карбидное превращение, в результате которого образуется цементит (еРехС -> РедС). Процессы, протекающие при этой стадии отпуска, сопровождаются уменьшением внутренних напряжений (напряжений второго рода), возникших в стали в связи с объемными изменениями, вызванными распадом мартенсита и остаточного аустенита. Следовательно, сталь, отпущеш1ая при температуре 350—400° С, состоит из упруго деформированных кристаллов феррита и распределенных в них мелкодисперсных частиц цементита.  [c.198]

Другой tan карбидного превращения наблюдается в стали 5ХГСВФ, умеющей повышенное содержание хрома. В результате отпуска при 500—ббО С в этой стали наблюдается наряду с карбидами типа Meg образование некоторого количества дисперсных частиц карбидов типа Ме,Сз, распределенных относительно равномерно в объеме металла и вяло коагулирующих при этой температуре. Снижения теплостойкости вследствие карбидного превраще-  [c.73]

При отпуске происходит несколько пропессов. Основной — распад мартенсита, состоящий в выделении углерода в виде карбидов. Кроме того, распадается остаточный аустенит, совершаются карбидное превращение и коагуляция карбидов, уменьшаются несовершенства кристаллического строения а-твердого раствора и остаточные напряжения.  [c.186]

Ш. Завершаются распад мартенсита и карбидное превращение. Из мартенсита выделяется весь пересыщающий углерод в виде карбидов, те-трагональность решетки а-твердого раствора устраняется — мартенсит переходит в феррит. После отпуска при 380-400 °С в структуре стали обнаруживается только карбид цементитного типа. Оба указанные процесса вызывают увеличение плотности стали — длина образца уменьшается (см. рис. 6.31).  [c.187]


Изложенные выше результаты исследований имеют ряд серьезных противоречий. Так, М, П. Арбузов отмечает [37], что трудно объяснить, почему при низких температурах отпужа в ирисутствии цементита должна возникать новая фаза, более богатая углеродом, чем цементит, которая затем при более высоких температурах перейдет в цементит. Пока не вполне ясны причины очень большого уменьшения объема стали при отпуске при 300° оно не может быть объяснено только карбидным превращением. Смещение точек Кюри многие исследо-  [c.695]


Смотреть страницы где упоминается термин Карбидное превращение при отпуске : [c.1645]    [c.187]    [c.186]    [c.199]    [c.272]    [c.75]    [c.120]    [c.278]    [c.189]    [c.279]    [c.313]    [c.373]    [c.320]    [c.238]    [c.108]    [c.44]    [c.3]    [c.703]   
Металловедение и термическая обработка стали Том 1, 2 Издание 2 (1961) -- [ c.694 , c.703 ]



ПОИСК



Влияние карбидных превращений на устойчивость против отпуска новых штамповых сталей (М. М. Сандомирский)

Отпуск

Отпуск карбидный

Отпуская ось

Превращение

Превращение при отпуске



© 2025 Mash-xxl.info Реклама на сайте